@ -0,0 +1,470 @@ |
|||
package prover |
|||
|
|||
import ( |
|||
bn256 "github.com/ethereum/go-ethereum/crypto/bn256/cloudflare" |
|||
cryptoConstants "github.com/iden3/go-iden3-crypto/constants" |
|||
"math/big" |
|||
) |
|||
|
|||
type TableG1 struct { |
|||
data []*bn256.G1 |
|||
} |
|||
|
|||
func (t TableG1) GetData() []*bn256.G1 { |
|||
return t.data |
|||
} |
|||
|
|||
// Compute table of gsize elements as ::
|
|||
// Table[0] = Inf
|
|||
// Table[1] = a[0]
|
|||
// Table[2] = a[1]
|
|||
// Table[3] = a[0]+a[1]
|
|||
// .....
|
|||
// Table[(1<<gsize)-1] = a[0]+a[1]+...+a[gsize-1]
|
|||
func (t *TableG1) NewTableG1(a []*bn256.G1, gsize int, toaffine bool) { |
|||
// EC table
|
|||
table := make([]*bn256.G1, 0) |
|||
|
|||
// We need at least gsize elements. If not enough, fill with 0
|
|||
a_ext := make([]*bn256.G1, 0) |
|||
a_ext = append(a_ext, a...) |
|||
|
|||
for i := len(a); i < gsize; i++ { |
|||
a_ext = append(a_ext, new(bn256.G1).ScalarBaseMult(big.NewInt(0))) |
|||
} |
|||
|
|||
elG1 := new(bn256.G1).ScalarBaseMult(big.NewInt(0)) |
|||
table = append(table, elG1) |
|||
last_pow2 := 1 |
|||
nelems := 0 |
|||
for i := 1; i < 1<<gsize; i++ { |
|||
elG1 := new(bn256.G1) |
|||
// if power of 2
|
|||
if i&(i-1) == 0 { |
|||
last_pow2 = i |
|||
elG1.Set(a_ext[nelems]) |
|||
nelems++ |
|||
} else { |
|||
elG1.Add(table[last_pow2], table[i-last_pow2]) |
|||
// TODO bn256 doesn't export MakeAffine function. We need to fork repo
|
|||
//table[i].MakeAffine()
|
|||
} |
|||
table = append(table, elG1) |
|||
} |
|||
if toaffine { |
|||
for i := 0; i < len(table); i++ { |
|||
info := table[i].Marshal() |
|||
table[i].Unmarshal(info) |
|||
} |
|||
} |
|||
t.data = table |
|||
} |
|||
|
|||
func (t TableG1) Marshal() []byte { |
|||
info := make([]byte, 0) |
|||
for _, el := range t.data { |
|||
info = append(info, el.Marshal()...) |
|||
} |
|||
|
|||
return info |
|||
} |
|||
|
|||
// Multiply scalar by precomputed table of G1 elements
|
|||
func (t *TableG1) MulTableG1(k []*big.Int, Q_prev *bn256.G1, gsize int) *bn256.G1 { |
|||
// We need at least gsize elements. If not enough, fill with 0
|
|||
k_ext := make([]*big.Int, 0) |
|||
k_ext = append(k_ext, k...) |
|||
|
|||
for i := len(k); i < gsize; i++ { |
|||
k_ext = append(k_ext, new(big.Int).SetUint64(0)) |
|||
} |
|||
|
|||
Q := new(bn256.G1).ScalarBaseMult(big.NewInt(0)) |
|||
|
|||
msb := getMsb(k_ext) |
|||
|
|||
for i := msb - 1; i >= 0; i-- { |
|||
// TODO. bn256 doesn't export double operation. We will need to fork repo and export it
|
|||
Q = new(bn256.G1).Add(Q, Q) |
|||
b := getBit(k_ext, i) |
|||
if b != 0 { |
|||
// TODO. bn256 doesn't export mixed addition (Jacobian + Affine), which is more efficient.
|
|||
Q.Add(Q, t.data[b]) |
|||
} |
|||
} |
|||
if Q_prev != nil { |
|||
return Q.Add(Q, Q_prev) |
|||
} else { |
|||
return Q |
|||
} |
|||
} |
|||
|
|||
// Multiply scalar by precomputed table of G1 elements without intermediate doubling
|
|||
func MulTableNoDoubleG1(t []TableG1, k []*big.Int, Q_prev *bn256.G1, gsize int) *bn256.G1 { |
|||
// We need at least gsize elements. If not enough, fill with 0
|
|||
min_nelems := len(t) * gsize |
|||
k_ext := make([]*big.Int, 0) |
|||
k_ext = append(k_ext, k...) |
|||
for i := len(k); i < min_nelems; i++ { |
|||
k_ext = append(k_ext, new(big.Int).SetUint64(0)) |
|||
} |
|||
// Init Adders
|
|||
nbitsQ := cryptoConstants.Q.BitLen() |
|||
Q := make([]*bn256.G1, nbitsQ) |
|||
|
|||
for i := 0; i < nbitsQ; i++ { |
|||
Q[i] = new(bn256.G1).ScalarBaseMult(big.NewInt(0)) |
|||
} |
|||
|
|||
// Perform bitwise addition
|
|||
for j := 0; j < len(t); j++ { |
|||
msb := getMsb(k_ext[j*gsize : (j+1)*gsize]) |
|||
|
|||
for i := msb - 1; i >= 0; i-- { |
|||
b := getBit(k_ext[j*gsize:(j+1)*gsize], i) |
|||
if b != 0 { |
|||
// TODO. bn256 doesn't export mixed addition (Jacobian + Affine), which is more efficient.
|
|||
Q[i].Add(Q[i], t[j].data[b]) |
|||
} |
|||
} |
|||
} |
|||
|
|||
// Consolidate Addition
|
|||
R := new(bn256.G1).Set(Q[nbitsQ-1]) |
|||
for i := nbitsQ - 1; i > 0; i-- { |
|||
// TODO. bn256 doesn't export double operation. We will need to fork repo and export it
|
|||
R = new(bn256.G1).Add(R, R) |
|||
R.Add(R, Q[i-1]) |
|||
} |
|||
|
|||
if Q_prev != nil { |
|||
return R.Add(R, Q_prev) |
|||
} else { |
|||
return R |
|||
} |
|||
} |
|||
|
|||
// Compute tables within function. This solution should still be faster than std multiplication
|
|||
// for gsize = 7
|
|||
func ScalarMultG1(a []*bn256.G1, k []*big.Int, Q_prev *bn256.G1, gsize int) *bn256.G1 { |
|||
ntables := int((len(a) + gsize - 1) / gsize) |
|||
table := TableG1{} |
|||
Q := new(bn256.G1).ScalarBaseMult(new(big.Int)) |
|||
|
|||
for i := 0; i < ntables-1; i++ { |
|||
table.NewTableG1(a[i*gsize:(i+1)*gsize], gsize, false) |
|||
Q = table.MulTableG1(k[i*gsize:(i+1)*gsize], Q, gsize) |
|||
} |
|||
table.NewTableG1(a[(ntables-1)*gsize:], gsize, false) |
|||
Q = table.MulTableG1(k[(ntables-1)*gsize:], Q, gsize) |
|||
|
|||
if Q_prev != nil { |
|||
return Q.Add(Q, Q_prev) |
|||
} else { |
|||
return Q |
|||
} |
|||
} |
|||
|
|||
// Multiply scalar by precomputed table of G1 elements without intermediate doubling
|
|||
func ScalarMultNoDoubleG1(a []*bn256.G1, k []*big.Int, Q_prev *bn256.G1, gsize int) *bn256.G1 { |
|||
ntables := int((len(a) + gsize - 1) / gsize) |
|||
table := TableG1{} |
|||
|
|||
// We need at least gsize elements. If not enough, fill with 0
|
|||
min_nelems := ntables * gsize |
|||
k_ext := make([]*big.Int, 0) |
|||
k_ext = append(k_ext, k...) |
|||
for i := len(k); i < min_nelems; i++ { |
|||
k_ext = append(k_ext, new(big.Int).SetUint64(0)) |
|||
} |
|||
// Init Adders
|
|||
nbitsQ := cryptoConstants.Q.BitLen() |
|||
Q := make([]*bn256.G1, nbitsQ) |
|||
|
|||
for i := 0; i < nbitsQ; i++ { |
|||
Q[i] = new(bn256.G1).ScalarBaseMult(big.NewInt(0)) |
|||
} |
|||
|
|||
// Perform bitwise addition
|
|||
for j := 0; j < ntables-1; j++ { |
|||
table.NewTableG1(a[j*gsize:(j+1)*gsize], gsize, false) |
|||
msb := getMsb(k_ext[j*gsize : (j+1)*gsize]) |
|||
|
|||
for i := msb - 1; i >= 0; i-- { |
|||
b := getBit(k_ext[j*gsize:(j+1)*gsize], i) |
|||
if b != 0 { |
|||
// TODO. bn256 doesn't export mixed addition (Jacobian + Affine), which is more efficient.
|
|||
Q[i].Add(Q[i], table.data[b]) |
|||
} |
|||
} |
|||
} |
|||
table.NewTableG1(a[(ntables-1)*gsize:], gsize, false) |
|||
msb := getMsb(k_ext[(ntables-1)*gsize:]) |
|||
|
|||
for i := msb - 1; i >= 0; i-- { |
|||
b := getBit(k_ext[(ntables-1)*gsize:], i) |
|||
if b != 0 { |
|||
// TODO. bn256 doesn't export mixed addition (Jacobian + Affine), which is more efficient.
|
|||
Q[i].Add(Q[i], table.data[b]) |
|||
} |
|||
} |
|||
|
|||
// Consolidate Addition
|
|||
R := new(bn256.G1).Set(Q[nbitsQ-1]) |
|||
for i := nbitsQ - 1; i > 0; i-- { |
|||
// TODO. bn256 doesn't export double operation. We will need to fork repo and export it
|
|||
R = new(bn256.G1).Add(R, R) |
|||
R.Add(R, Q[i-1]) |
|||
} |
|||
if Q_prev != nil { |
|||
return R.Add(R, Q_prev) |
|||
} else { |
|||
return R |
|||
} |
|||
} |
|||
|
|||
/////
|
|||
|
|||
// TODO - How can avoid replicating code in G2?
|
|||
//G2
|
|||
|
|||
type TableG2 struct { |
|||
data []*bn256.G2 |
|||
} |
|||
|
|||
func (t TableG2) GetData() []*bn256.G2 { |
|||
return t.data |
|||
} |
|||
|
|||
// Compute table of gsize elements as ::
|
|||
// Table[0] = Inf
|
|||
// Table[1] = a[0]
|
|||
// Table[2] = a[1]
|
|||
// Table[3] = a[0]+a[1]
|
|||
// .....
|
|||
// Table[(1<<gsize)-1] = a[0]+a[1]+...+a[gsize-1]
|
|||
// TODO -> toaffine = True doesnt work. Problem with Marshal/Unmarshal
|
|||
func (t *TableG2) NewTableG2(a []*bn256.G2, gsize int, toaffine bool) { |
|||
// EC table
|
|||
table := make([]*bn256.G2, 0) |
|||
|
|||
// We need at least gsize elements. If not enough, fill with 0
|
|||
a_ext := make([]*bn256.G2, 0) |
|||
a_ext = append(a_ext, a...) |
|||
|
|||
for i := len(a); i < gsize; i++ { |
|||
a_ext = append(a_ext, new(bn256.G2).ScalarBaseMult(big.NewInt(0))) |
|||
} |
|||
|
|||
elG2 := new(bn256.G2).ScalarBaseMult(big.NewInt(0)) |
|||
table = append(table, elG2) |
|||
last_pow2 := 1 |
|||
nelems := 0 |
|||
for i := 1; i < 1<<gsize; i++ { |
|||
elG2 := new(bn256.G2) |
|||
// if power of 2
|
|||
if i&(i-1) == 0 { |
|||
last_pow2 = i |
|||
elG2.Set(a_ext[nelems]) |
|||
nelems++ |
|||
} else { |
|||
elG2.Add(table[last_pow2], table[i-last_pow2]) |
|||
// TODO bn256 doesn't export MakeAffine function. We need to fork repo
|
|||
//table[i].MakeAffine()
|
|||
} |
|||
table = append(table, elG2) |
|||
} |
|||
if toaffine { |
|||
for i := 0; i < len(table); i++ { |
|||
info := table[i].Marshal() |
|||
table[i].Unmarshal(info) |
|||
} |
|||
} |
|||
t.data = table |
|||
} |
|||
|
|||
func (t TableG2) Marshal() []byte { |
|||
info := make([]byte, 0) |
|||
for _, el := range t.data { |
|||
info = append(info, el.Marshal()...) |
|||
} |
|||
|
|||
return info |
|||
} |
|||
|
|||
// Multiply scalar by precomputed table of G2 elements
|
|||
func (t *TableG2) MulTableG2(k []*big.Int, Q_prev *bn256.G2, gsize int) *bn256.G2 { |
|||
// We need at least gsize elements. If not enough, fill with 0
|
|||
k_ext := make([]*big.Int, 0) |
|||
k_ext = append(k_ext, k...) |
|||
|
|||
for i := len(k); i < gsize; i++ { |
|||
k_ext = append(k_ext, new(big.Int).SetUint64(0)) |
|||
} |
|||
|
|||
Q := new(bn256.G2).ScalarBaseMult(big.NewInt(0)) |
|||
|
|||
msb := getMsb(k_ext) |
|||
|
|||
for i := msb - 1; i >= 0; i-- { |
|||
// TODO. bn256 doesn't export double operation. We will need to fork repo and export it
|
|||
Q = new(bn256.G2).Add(Q, Q) |
|||
b := getBit(k_ext, i) |
|||
if b != 0 { |
|||
// TODO. bn256 doesn't export mixed addition (Jacobian + Affine), which is more efficient.
|
|||
Q.Add(Q, t.data[b]) |
|||
} |
|||
} |
|||
if Q_prev != nil { |
|||
return Q.Add(Q, Q_prev) |
|||
} else { |
|||
return Q |
|||
} |
|||
} |
|||
|
|||
// Multiply scalar by precomputed table of G2 elements without intermediate doubling
|
|||
func MulTableNoDoubleG2(t []TableG2, k []*big.Int, Q_prev *bn256.G2, gsize int) *bn256.G2 { |
|||
// We need at least gsize elements. If not enough, fill with 0
|
|||
min_nelems := len(t) * gsize |
|||
k_ext := make([]*big.Int, 0) |
|||
k_ext = append(k_ext, k...) |
|||
for i := len(k); i < min_nelems; i++ { |
|||
k_ext = append(k_ext, new(big.Int).SetUint64(0)) |
|||
} |
|||
// Init Adders
|
|||
nbitsQ := cryptoConstants.Q.BitLen() |
|||
Q := make([]*bn256.G2, nbitsQ) |
|||
|
|||
for i := 0; i < nbitsQ; i++ { |
|||
Q[i] = new(bn256.G2).ScalarBaseMult(big.NewInt(0)) |
|||
} |
|||
|
|||
// Perform bitwise addition
|
|||
for j := 0; j < len(t); j++ { |
|||
msb := getMsb(k_ext[j*gsize : (j+1)*gsize]) |
|||
|
|||
for i := msb - 1; i >= 0; i-- { |
|||
b := getBit(k_ext[j*gsize:(j+1)*gsize], i) |
|||
if b != 0 { |
|||
// TODO. bn256 doesn't export mixed addition (Jacobian + Affine), which is more efficient.
|
|||
Q[i].Add(Q[i], t[j].data[b]) |
|||
} |
|||
} |
|||
} |
|||
|
|||
// Consolidate Addition
|
|||
R := new(bn256.G2).Set(Q[nbitsQ-1]) |
|||
for i := nbitsQ - 1; i > 0; i-- { |
|||
// TODO. bn256 doesn't export double operation. We will need to fork repo and export it
|
|||
R = new(bn256.G2).Add(R, R) |
|||
R.Add(R, Q[i-1]) |
|||
} |
|||
if Q_prev != nil { |
|||
return R.Add(R, Q_prev) |
|||
} else { |
|||
return R |
|||
} |
|||
} |
|||
|
|||
// Compute tables within function. This solution should still be faster than std multiplication
|
|||
// for gsize = 7
|
|||
func ScalarMultG2(a []*bn256.G2, k []*big.Int, Q_prev *bn256.G2, gsize int) *bn256.G2 { |
|||
ntables := int((len(a) + gsize - 1) / gsize) |
|||
table := TableG2{} |
|||
Q := new(bn256.G2).ScalarBaseMult(new(big.Int)) |
|||
|
|||
for i := 0; i < ntables-1; i++ { |
|||
table.NewTableG2(a[i*gsize:(i+1)*gsize], gsize, false) |
|||
Q = table.MulTableG2(k[i*gsize:(i+1)*gsize], Q, gsize) |
|||
} |
|||
table.NewTableG2(a[(ntables-1)*gsize:], gsize, false) |
|||
Q = table.MulTableG2(k[(ntables-1)*gsize:], Q, gsize) |
|||
|
|||
if Q_prev != nil { |
|||
return Q.Add(Q, Q_prev) |
|||
} else { |
|||
return Q |
|||
} |
|||
} |
|||
|
|||
// Multiply scalar by precomputed table of G2 elements without intermediate doubling
|
|||
func ScalarMultNoDoubleG2(a []*bn256.G2, k []*big.Int, Q_prev *bn256.G2, gsize int) *bn256.G2 { |
|||
ntables := int((len(a) + gsize - 1) / gsize) |
|||
table := TableG2{} |
|||
|
|||
// We need at least gsize elements. If not enough, fill with 0
|
|||
min_nelems := ntables * gsize |
|||
k_ext := make([]*big.Int, 0) |
|||
k_ext = append(k_ext, k...) |
|||
for i := len(k); i < min_nelems; i++ { |
|||
k_ext = append(k_ext, new(big.Int).SetUint64(0)) |
|||
} |
|||
// Init Adders
|
|||
nbitsQ := cryptoConstants.Q.BitLen() |
|||
Q := make([]*bn256.G2, nbitsQ) |
|||
|
|||
for i := 0; i < nbitsQ; i++ { |
|||
Q[i] = new(bn256.G2).ScalarBaseMult(big.NewInt(0)) |
|||
} |
|||
|
|||
// Perform bitwise addition
|
|||
for j := 0; j < ntables-1; j++ { |
|||
table.NewTableG2(a[j*gsize:(j+1)*gsize], gsize, false) |
|||
msb := getMsb(k_ext[j*gsize : (j+1)*gsize]) |
|||
|
|||
for i := msb - 1; i >= 0; i-- { |
|||
b := getBit(k_ext[j*gsize:(j+1)*gsize], i) |
|||
if b != 0 { |
|||
// TODO. bn256 doesn't export mixed addition (Jacobian + Affine), which is more efficient.
|
|||
Q[i].Add(Q[i], table.data[b]) |
|||
} |
|||
} |
|||
} |
|||
table.NewTableG2(a[(ntables-1)*gsize:], gsize, false) |
|||
msb := getMsb(k_ext[(ntables-1)*gsize:]) |
|||
|
|||
for i := msb - 1; i >= 0; i-- { |
|||
b := getBit(k_ext[(ntables-1)*gsize:], i) |
|||
if b != 0 { |
|||
// TODO. bn256 doesn't export mixed addition (Jacobian + Affine), which is more efficient.
|
|||
Q[i].Add(Q[i], table.data[b]) |
|||
} |
|||
} |
|||
|
|||
// Consolidate Addition
|
|||
R := new(bn256.G2).Set(Q[nbitsQ-1]) |
|||
for i := nbitsQ - 1; i > 0; i-- { |
|||
// TODO. bn256 doesn't export double operation. We will need to fork repo and export it
|
|||
R = new(bn256.G2).Add(R, R) |
|||
R.Add(R, Q[i-1]) |
|||
} |
|||
if Q_prev != nil { |
|||
return R.Add(R, Q_prev) |
|||
} else { |
|||
return R |
|||
} |
|||
} |
|||
|
|||
// Return most significant bit position in a group of Big Integers
|
|||
func getMsb(k []*big.Int) int { |
|||
msb := 0 |
|||
|
|||
for _, el := range k { |
|||
tmp_msb := el.BitLen() |
|||
if tmp_msb > msb { |
|||
msb = tmp_msb |
|||
} |
|||
} |
|||
return msb |
|||
} |
|||
|
|||
// Return ith bit in group of Big Integers
|
|||
func getBit(k []*big.Int, i int) uint { |
|||
table_idx := uint(0) |
|||
|
|||
for idx, el := range k { |
|||
b := el.Bit(i) |
|||
table_idx += (b << idx) |
|||
} |
|||
return table_idx |
|||
} |
@ -0,0 +1,162 @@ |
|||
package prover |
|||
|
|||
import ( |
|||
"bytes" |
|||
"crypto/rand" |
|||
"fmt" |
|||
bn256 "github.com/ethereum/go-ethereum/crypto/bn256/cloudflare" |
|||
"math/big" |
|||
"testing" |
|||
"time" |
|||
) |
|||
|
|||
const ( |
|||
N1 = 5000 |
|||
N2 = 5000 |
|||
) |
|||
|
|||
func randomBigIntArray(n int) []*big.Int { |
|||
var p []*big.Int |
|||
for i := 0; i < n; i++ { |
|||
pi := randBI() |
|||
p = append(p, pi) |
|||
} |
|||
|
|||
return p |
|||
} |
|||
|
|||
func randomG1Array(n int) []*bn256.G1 { |
|||
arrayG1 := make([]*bn256.G1, n) |
|||
|
|||
for i := 0; i < n; i++ { |
|||
_, arrayG1[i], _ = bn256.RandomG1(rand.Reader) |
|||
} |
|||
return arrayG1 |
|||
} |
|||
|
|||
func randomG2Array(n int) []*bn256.G2 { |
|||
arrayG2 := make([]*bn256.G2, n) |
|||
|
|||
for i := 0; i < n; i++ { |
|||
_, arrayG2[i], _ = bn256.RandomG2(rand.Reader) |
|||
} |
|||
return arrayG2 |
|||
} |
|||
|
|||
func TestTableG1(t *testing.T) { |
|||
n := N1 |
|||
|
|||
// init scalar
|
|||
var arrayW = randomBigIntArray(n) |
|||
// init G1 array
|
|||
var arrayG1 = randomG1Array(n) |
|||
|
|||
beforeT := time.Now() |
|||
Q1 := new(bn256.G1).ScalarBaseMult(new(big.Int)) |
|||
for i := 0; i < n; i++ { |
|||
Q1.Add(Q1, new(bn256.G1).ScalarMult(arrayG1[i], arrayW[i])) |
|||
} |
|||
fmt.Println("Std. Mult. time elapsed:", time.Since(beforeT)) |
|||
|
|||
for gsize := 2; gsize < 10; gsize++ { |
|||
ntables := int((n + gsize - 1) / gsize) |
|||
table := make([]TableG1, ntables) |
|||
|
|||
for i := 0; i < ntables-1; i++ { |
|||
table[i].NewTableG1(arrayG1[i*gsize:(i+1)*gsize], gsize, true) |
|||
} |
|||
table[ntables-1].NewTableG1(arrayG1[(ntables-1)*gsize:], gsize, true) |
|||
|
|||
beforeT = time.Now() |
|||
Q2 := new(bn256.G1).ScalarBaseMult(new(big.Int)) |
|||
for i := 0; i < ntables-1; i++ { |
|||
Q2 = table[i].MulTableG1(arrayW[i*gsize:(i+1)*gsize], Q2, gsize) |
|||
} |
|||
Q2 = table[ntables-1].MulTableG1(arrayW[(ntables-1)*gsize:], Q2, gsize) |
|||
fmt.Printf("Gsize : %d, TMult time elapsed: %s\n", gsize, time.Since(beforeT)) |
|||
|
|||
beforeT = time.Now() |
|||
Q3 := ScalarMultG1(arrayG1, arrayW, nil, gsize) |
|||
fmt.Printf("Gsize : %d, TMult time elapsed (inc table comp): %s\n", gsize, time.Since(beforeT)) |
|||
|
|||
beforeT = time.Now() |
|||
Q4 := MulTableNoDoubleG1(table, arrayW, nil, gsize) |
|||
fmt.Printf("Gsize : %d, TMultNoDouble time elapsed: %s\n", gsize, time.Since(beforeT)) |
|||
|
|||
beforeT = time.Now() |
|||
Q5 := ScalarMultNoDoubleG1(arrayG1, arrayW, nil, gsize) |
|||
fmt.Printf("Gsize : %d, TMultNoDouble time elapsed (inc table comp): %s\n", gsize, time.Since(beforeT)) |
|||
|
|||
if bytes.Compare(Q1.Marshal(), Q2.Marshal()) != 0 { |
|||
t.Error("Error in TMult") |
|||
} |
|||
if bytes.Compare(Q1.Marshal(), Q3.Marshal()) != 0 { |
|||
t.Error("Error in TMult with table comp") |
|||
} |
|||
if bytes.Compare(Q1.Marshal(), Q4.Marshal()) != 0 { |
|||
t.Error("Error in TMultNoDouble") |
|||
} |
|||
if bytes.Compare(Q1.Marshal(), Q5.Marshal()) != 0 { |
|||
t.Error("Error in TMultNoDoublee with table comp") |
|||
} |
|||
} |
|||
} |
|||
|
|||
func TestTableG2(t *testing.T) { |
|||
n := N2 |
|||
|
|||
// init scalar
|
|||
var arrayW = randomBigIntArray(n) |
|||
// init G2 array
|
|||
var arrayG2 = randomG2Array(n) |
|||
|
|||
beforeT := time.Now() |
|||
Q1 := new(bn256.G2).ScalarBaseMult(new(big.Int)) |
|||
for i := 0; i < n; i++ { |
|||
Q1.Add(Q1, new(bn256.G2).ScalarMult(arrayG2[i], arrayW[i])) |
|||
} |
|||
fmt.Println("Std. Mult. time elapsed:", time.Since(beforeT)) |
|||
|
|||
for gsize := 2; gsize < 10; gsize++ { |
|||
ntables := int((n + gsize - 1) / gsize) |
|||
table := make([]TableG2, ntables) |
|||
|
|||
for i := 0; i < ntables-1; i++ { |
|||
table[i].NewTableG2(arrayG2[i*gsize:(i+1)*gsize], gsize, false) |
|||
} |
|||
table[ntables-1].NewTableG2(arrayG2[(ntables-1)*gsize:], gsize, false) |
|||
|
|||
beforeT = time.Now() |
|||
Q2 := new(bn256.G2).ScalarBaseMult(new(big.Int)) |
|||
for i := 0; i < ntables-1; i++ { |
|||
Q2 = table[i].MulTableG2(arrayW[i*gsize:(i+1)*gsize], Q2, gsize) |
|||
} |
|||
Q2 = table[ntables-1].MulTableG2(arrayW[(ntables-1)*gsize:], Q2, gsize) |
|||
fmt.Printf("Gsize : %d, TMult time elapsed: %s\n", gsize, time.Since(beforeT)) |
|||
|
|||
beforeT = time.Now() |
|||
Q3 := ScalarMultG2(arrayG2, arrayW, nil, gsize) |
|||
fmt.Printf("Gsize : %d, TMult time elapsed (inc table comp): %s\n", gsize, time.Since(beforeT)) |
|||
|
|||
beforeT = time.Now() |
|||
Q4 := MulTableNoDoubleG2(table, arrayW, nil, gsize) |
|||
fmt.Printf("Gsize : %d, TMultNoDouble time elapsed: %s\n", gsize, time.Since(beforeT)) |
|||
|
|||
beforeT = time.Now() |
|||
Q5 := ScalarMultNoDoubleG2(arrayG2, arrayW, nil, gsize) |
|||
fmt.Printf("Gsize : %d, TMultNoDouble time elapsed (inc table comp): %s\n", gsize, time.Since(beforeT)) |
|||
|
|||
if bytes.Compare(Q1.Marshal(), Q2.Marshal()) != 0 { |
|||
t.Error("Error in TMult") |
|||
} |
|||
if bytes.Compare(Q1.Marshal(), Q3.Marshal()) != 0 { |
|||
t.Error("Error in TMult with table comp") |
|||
} |
|||
if bytes.Compare(Q1.Marshal(), Q4.Marshal()) != 0 { |
|||
t.Error("Error in TMultNoDouble") |
|||
} |
|||
if bytes.Compare(Q1.Marshal(), Q5.Marshal()) != 0 { |
|||
t.Error("Error in TMultNoDoublee with table comp") |
|||
} |
|||
} |
|||
} |
@ -0,0 +1,49 @@ |
|||
# Tables Pre-calculation |
|||
The most time consuming part of a ZKSnark proof calculation is the scalar multiplication of elliptic curve points. Direct mechanism accumulates each multiplication. However, prover only needs the total accumulation. |
|||
|
|||
There are two potential improvements to the naive approach: |
|||
|
|||
1. Apply Strauss-Shamir method (https://stackoverflow.com/questions/50993471/ec-scalar-multiplication-with-strauss-shamir-method). |
|||
2. Leave the doubling operation for the last step |
|||
|
|||
Both options can be combined. |
|||
|
|||
In the following table, we show the results of using the naive method, Srauss-Shamir and Strauss-Shamir + No doubling. These last two options are repeated for different table grouping order. |
|||
|
|||
There are 50000 G1 Elliptical Curve Points, and the scalars are 254 bits (BN256 curve). |
|||
|
|||
There may be some concern on the additional size of the tables since they need to be loaded into a smartphone during the proof, and the time required to load these tables may exceed the benefits. If this is a problem, another althernative is to compute the tables during the proof itself. Depending on the Group Size, timing may be better than the naive approach. |
|||
|
|||
|
|||
| Algorithm (G1) | GS 2 | GS 3 | GS 4 | GS 5 | GS 6 | GS 7 | GS 8 | GS 9 | |
|||
|---|---|---|--|---|---|---|---|---| |
|||
| Naive | 6.63s | - | - | - | - | - | - | - | |
|||
| Strauss | 13.16s | 9.03s | 6.95s | 5.61s | 4.91s | 4.26s | 3.88s | 3.54 s | |
|||
| Strauss + Table Computation | 16.13s | 11.32s | 8.47s | 7.10s | 6.2s | 5.94s | 6.01s | 6.69s | |
|||
| No Doubling | 3.74s | 3.00s | 2.38s | 1.96s | 1.79s | 1.54s | 1.50s | 1.44s| |
|||
| No Doubling + Table Computation | 6.83s | 5.1s | 4.16s | 3.52s| 3.22s | 3.21s | 3.57s | 4.56s | |
|||
|
|||
There are 5000 G2 Elliptical Curve Points, and the scalars are 254 bits (BN256 curve). |
|||
|
|||
| Algorithm (G2) | GS 2 | GS 3 | GS 4 | GS 5 | GS 6 | GS 7 | GS 8 | GS 9 | |
|||
|---|---|---|--|---|---|---|---|---| |
|||
| Naive | 3.55s | | | | | | | | |
|||
| Strauss | 3.55s | 2.54s | 1.96s | 1.58s | 1.38s | 1.20s | 1.03s | 937ms | |
|||
| Strauss + Table Computation | 3.59s | 2.58s | 2.04s | 1.71s | 1.51s | 1.46s | 1.51s | 1.82s | |
|||
| No Doubling | 1.49s | 1.16s | 952ms | 719ms | 661ms | 548ms | 506ms| 444ms | |
|||
| No Doubling + Table Computation | 1.55s | 1.21s | 984ms | 841ms | 826ms | 847ms | 1.03s | 1.39s | |
|||
|
|||
| GS | Extra Disk Space per Constraint (G1)| |
|||
|----|--------| |
|||
| 2 | 64 B | |
|||
| 3 | 106 B | |
|||
| 4 | 192 B | |
|||
| 5 | 346 B | |
|||
| 6 | 618 B | |
|||
| 7 | 1106 B | |
|||
| 8 | 1984 B | |
|||
| 9 | 3577 B | |
|||
| N | 2^(N+6)/N - 64 B | |
|||
|
|||
Extra disk space per constraint in G2 is twice the requirements for G1 |
|||
|