Use fft on calculateH polynomial multiplication

For a circuit arround 22500 constraints:
- before: the proof was generated aprox in `80 seconds`
- now: the proof is generated aprox in `16 seconds`
This commit is contained in:
arnaucube
2020-04-21 15:38:50 +02:00
parent fb3bbedde5
commit 9b93bad028
3 changed files with 79 additions and 17 deletions

View File

@@ -48,7 +48,7 @@ func (roots rootsT) setRoots(n int) {
}
}
func fft(roots rootsT, pall []*ff.Element, bits, offset, step int) []*ff.Element {
func fftroots(roots rootsT, pall []*ff.Element, bits, offset, step int) []*ff.Element {
n := 1 << bits
if n == 1 {
return []*ff.Element{pall[offset]}
@@ -60,19 +60,18 @@ func fft(roots rootsT, pall []*ff.Element, bits, offset, step int) []*ff.Element
}
ndiv2 := n >> 1
p1 := fft(roots, pall, bits-1, offset, step*2)
p2 := fft(roots, pall, bits-1, offset+step, step*2)
p1 := fftroots(roots, pall, bits-1, offset, step*2)
p2 := fftroots(roots, pall, bits-1, offset+step, step*2)
out := make([]*ff.Element, n)
for i := 0; i < ndiv2; i++ {
// fmt.Println(i, len(roots.roots))
out[i] = ff.NewElement().Add(p1[i], ff.NewElement().Mul(roots.roots[bits][i], p2[i]))
out[i+ndiv2] = ff.NewElement().Sub(p1[i], ff.NewElement().Mul(roots.roots[bits][i], p2[i]))
}
return out
}
func ifft(p []*ff.Element) []*ff.Element {
func fft(p []*ff.Element) []*ff.Element {
if len(p) <= 1 {
return p
}
@@ -81,7 +80,14 @@ func ifft(p []*ff.Element) []*ff.Element {
roots.setRoots(int(bits))
m := 1 << int(bits)
ep := extend(p, m)
res := fft(roots, ep, int(bits), 0, 1)
res := fftroots(roots, ep, int(bits), 0, 1)
return res
}
func ifft(p []*ff.Element) []*ff.Element {
res := fft(p)
bits := math.Log2(float64(len(p)-1)) + 1
m := 1 << int(bits)
twoinvm := ff.NewElement().SetBigInt(fInv(fMul(big.NewInt(1), big.NewInt(int64(m)))))