|
|
@ -0,0 +1,104 @@ |
|
|
|
package gocircomprover |
|
|
|
|
|
|
|
import ( |
|
|
|
"fmt" |
|
|
|
"math" |
|
|
|
"math/big" |
|
|
|
) |
|
|
|
|
|
|
|
type rootsT struct { |
|
|
|
roots [][]*big.Int |
|
|
|
w []*big.Int |
|
|
|
} |
|
|
|
|
|
|
|
func newRootsT() rootsT { |
|
|
|
var roots rootsT |
|
|
|
|
|
|
|
rem := new(big.Int).Sub(R, big.NewInt(1)) |
|
|
|
s := 0 |
|
|
|
for rem.Bit(0) == 0 { // rem.Bit==0 when even
|
|
|
|
s++ |
|
|
|
rem = new(big.Int).Rsh(rem, 1) |
|
|
|
} |
|
|
|
roots.w = make([]*big.Int, s+1) |
|
|
|
roots.w[s] = FExp(big.NewInt(5), rem) |
|
|
|
|
|
|
|
n := s - 1 |
|
|
|
for n >= 0 { |
|
|
|
roots.w[n] = FMul(roots.w[n+1], roots.w[n+1]) |
|
|
|
n-- |
|
|
|
} |
|
|
|
roots.roots = make([][]*big.Int, 50) |
|
|
|
|
|
|
|
roots.setRoots(15) |
|
|
|
return roots |
|
|
|
} |
|
|
|
|
|
|
|
func (roots rootsT) setRoots(n int) { |
|
|
|
// var roots []bool
|
|
|
|
for i := n; i >= 0 && nil == roots.roots[i]; i-- { // TODO tmp i<=len(r)
|
|
|
|
r := big.NewInt(1) |
|
|
|
nroots := 1 << i |
|
|
|
var rootsi []*big.Int |
|
|
|
for j := 0; j < nroots; j++ { |
|
|
|
rootsi = append(rootsi, r) |
|
|
|
r = FMul(r, roots.w[i]) |
|
|
|
} |
|
|
|
// fmt.Println("rootsi", rootsi)
|
|
|
|
roots.roots[i] = rootsi |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
func fft(roots rootsT, pall []*big.Int, bits, offset, step int) []*big.Int { |
|
|
|
n := 1 << bits |
|
|
|
if n == 1 { |
|
|
|
return []*big.Int{pall[offset]} |
|
|
|
} else if n == 2 { |
|
|
|
return []*big.Int{ |
|
|
|
FAdd(pall[offset], pall[offset+step]), // TODO tmp
|
|
|
|
FSub(pall[offset], pall[offset+step]), |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
ndiv2 := n >> 1 |
|
|
|
p1 := fft(roots, pall, bits-1, offset, step*2) |
|
|
|
p2 := fft(roots, pall, bits-1, offset+step, step*2) |
|
|
|
|
|
|
|
// var out []*big.Int
|
|
|
|
out := make([]*big.Int, n) |
|
|
|
for i := 0; i < ndiv2; i++ { |
|
|
|
fmt.Println(i, len(roots.roots)) |
|
|
|
out[i] = FAdd(p1[i], FMul(roots.roots[bits][i], p2[i])) |
|
|
|
out[i+ndiv2] = FSub(p1[i], FMul(roots.roots[bits][i], p2[i])) |
|
|
|
} |
|
|
|
return out |
|
|
|
} |
|
|
|
|
|
|
|
func ifft(p []*big.Int) []*big.Int { |
|
|
|
if len(p) <= 1 { |
|
|
|
return p |
|
|
|
} |
|
|
|
bits := math.Log2(float64(len(p)-1)) + 1 |
|
|
|
roots := newRootsT() |
|
|
|
roots.setRoots(int(bits)) |
|
|
|
m := 1 << int(bits) |
|
|
|
ep := extend(p, m) |
|
|
|
res := fft(roots, ep, int(bits), 0, 1) |
|
|
|
|
|
|
|
twoinvm := FInv(FMul(big.NewInt(1), big.NewInt(int64(m)))) |
|
|
|
|
|
|
|
var resn []*big.Int |
|
|
|
for i := 0; i < m; i++ { |
|
|
|
resn = append(resn, FMul(res[(m-i)%m], twoinvm)) |
|
|
|
} |
|
|
|
|
|
|
|
return resn |
|
|
|
} |
|
|
|
|
|
|
|
func extend(p []*big.Int, e int) []*big.Int { |
|
|
|
if e == len(p) { |
|
|
|
return p |
|
|
|
} |
|
|
|
z := arrayOfZeroes(e - len(p)) |
|
|
|
return append(p, z...) |
|
|
|
} |