package prover
|
|
|
|
import (
|
|
"math/big"
|
|
bn256 "github.com/ethereum/go-ethereum/crypto/bn256/cloudflare"
|
|
cryptoConstants "github.com/iden3/go-iden3-crypto/constants"
|
|
)
|
|
|
|
type TableG1 struct{
|
|
data []*bn256.G1
|
|
}
|
|
|
|
|
|
func (t TableG1) GetData() []*bn256.G1 {
|
|
return t.data
|
|
}
|
|
|
|
|
|
// Compute table of gsize elements as ::
|
|
// Table[0] = Inf
|
|
// Table[1] = a[0]
|
|
// Table[2] = a[1]
|
|
// Table[3] = a[0]+a[1]
|
|
// .....
|
|
// Table[(1<<gsize)-1] = a[0]+a[1]+...+a[gsize-1]
|
|
func (t *TableG1) NewTableG1(a []*bn256.G1, gsize int){
|
|
// EC table
|
|
table := make([]*bn256.G1, 0)
|
|
|
|
// We need at least gsize elements. If not enough, fill with 0
|
|
a_ext := make([]*bn256.G1, 0)
|
|
a_ext = append(a_ext, a...)
|
|
|
|
for i:=len(a); i<gsize; i++ {
|
|
a_ext = append(a_ext,new(bn256.G1).ScalarBaseMult(big.NewInt(0)))
|
|
}
|
|
|
|
elG1 := new(bn256.G1).ScalarBaseMult(big.NewInt(0))
|
|
table = append(table,elG1)
|
|
last_pow2 := 1
|
|
nelems := 0
|
|
for i :=1; i< 1<<gsize; i++ {
|
|
elG1 := new(bn256.G1)
|
|
// if power of 2
|
|
if i & (i-1) == 0{
|
|
last_pow2 = i
|
|
elG1.Set(a_ext[nelems])
|
|
nelems++
|
|
} else {
|
|
elG1.Add(table[last_pow2], table[i-last_pow2])
|
|
// TODO bn256 doesn't export MakeAffine function. We need to fork repo
|
|
//table[i].MakeAffine()
|
|
}
|
|
table = append(table, elG1)
|
|
}
|
|
t.data = table
|
|
}
|
|
|
|
// Multiply scalar by precomputed table of G1 elements
|
|
func (t *TableG1) MulTableG1(k []*big.Int, Q_prev *bn256.G1, gsize int) *bn256.G1 {
|
|
// We need at least gsize elements. If not enough, fill with 0
|
|
k_ext := make([]*big.Int, 0)
|
|
k_ext = append(k_ext, k...)
|
|
|
|
for i:=len(k); i < gsize; i++ {
|
|
k_ext = append(k_ext,new(big.Int).SetUint64(0))
|
|
}
|
|
|
|
Q := new(bn256.G1).ScalarBaseMult(big.NewInt(0))
|
|
|
|
msb := getMsb(k_ext)
|
|
|
|
for i := msb-1; i >= 0; i-- {
|
|
// TODO. bn256 doesn't export double operation. We will need to fork repo and export it
|
|
Q = new(bn256.G1).Add(Q,Q)
|
|
b := getBit(k_ext,i)
|
|
if b != 0 {
|
|
// TODO. bn256 doesn't export mixed addition (Jacobian + Affine), which is more efficient.
|
|
Q.Add(Q, t.data[b])
|
|
}
|
|
}
|
|
if Q_prev != nil {
|
|
return Q.Add(Q,Q_prev)
|
|
} else {
|
|
return Q
|
|
}
|
|
}
|
|
|
|
// Multiply scalar by precomputed table of G1 elements without intermediate doubling
|
|
func MulTableNoDoubleG1(t []TableG1, k []*big.Int, Q_prev *bn256.G1, gsize int) *bn256.G1 {
|
|
// We need at least gsize elements. If not enough, fill with 0
|
|
min_nelems := len(t) * gsize
|
|
k_ext := make([]*big.Int, 0)
|
|
k_ext = append(k_ext, k...)
|
|
for i := len(k); i < min_nelems; i++ {
|
|
k_ext = append(k_ext,new(big.Int).SetUint64(0))
|
|
}
|
|
// Init Adders
|
|
nbitsQ := cryptoConstants.Q.BitLen()
|
|
Q := make([]*bn256.G1,nbitsQ)
|
|
|
|
for i:=0; i< nbitsQ; i++ {
|
|
Q[i] = new(bn256.G1).ScalarBaseMult(big.NewInt(0))
|
|
}
|
|
|
|
// Perform bitwise addition
|
|
for j:=0; j < len(t); j++ {
|
|
msb := getMsb(k_ext[j*gsize:(j+1)*gsize])
|
|
|
|
for i := msb-1; i >= 0; i-- {
|
|
b := getBit(k_ext[j*gsize:(j+1)*gsize],i)
|
|
if b != 0 {
|
|
// TODO. bn256 doesn't export mixed addition (Jacobian + Affine), which is more efficient.
|
|
Q[i].Add(Q[i], t[j].data[b])
|
|
}
|
|
}
|
|
}
|
|
|
|
// Consolidate Addition
|
|
R := new(bn256.G1).Set(Q[nbitsQ-1])
|
|
for i:=nbitsQ-1; i>0; i-- {
|
|
// TODO. bn256 doesn't export double operation. We will need to fork repo and export it
|
|
R = new(bn256.G1).Add(R,R)
|
|
R.Add(R,Q[i-1])
|
|
}
|
|
|
|
if Q_prev != nil {
|
|
return R.Add(R,Q_prev)
|
|
} else {
|
|
return R
|
|
}
|
|
}
|
|
|
|
// Compute tables within function. This solution should still be faster than std multiplication
|
|
// for gsize = 7
|
|
func ScalarMultG1(a []*bn256.G1, k []*big.Int, Q_prev *bn256.G1, gsize int) *bn256.G1 {
|
|
ntables := int((len(a) + gsize - 1) / gsize)
|
|
table := TableG1{}
|
|
Q:= new(bn256.G1).ScalarBaseMult(new(big.Int))
|
|
|
|
for i:=0; i<ntables-1; i++ {
|
|
table.NewTableG1( a[i*gsize:(i+1)*gsize], gsize)
|
|
Q = table.MulTableG1(k[i*gsize:(i+1)*gsize], Q, gsize)
|
|
}
|
|
table.NewTableG1( a[(ntables-1)*gsize:], gsize)
|
|
Q = table.MulTableG1(k[(ntables-1)*gsize:], Q, gsize)
|
|
|
|
if Q_prev != nil {
|
|
return Q.Add(Q,Q_prev)
|
|
} else {
|
|
return Q
|
|
}
|
|
}
|
|
|
|
// Multiply scalar by precomputed table of G1 elements without intermediate doubling
|
|
func ScalarMultNoDoubleG1(a []*bn256.G1, k []*big.Int, Q_prev *bn256.G1, gsize int) *bn256.G1 {
|
|
ntables := int((len(a) + gsize - 1) / gsize)
|
|
table := TableG1{}
|
|
|
|
// We need at least gsize elements. If not enough, fill with 0
|
|
min_nelems := ntables * gsize
|
|
k_ext := make([]*big.Int, 0)
|
|
k_ext = append(k_ext, k...)
|
|
for i := len(k); i < min_nelems; i++ {
|
|
k_ext = append(k_ext,new(big.Int).SetUint64(0))
|
|
}
|
|
// Init Adders
|
|
nbitsQ := cryptoConstants.Q.BitLen()
|
|
Q := make([]*bn256.G1,nbitsQ)
|
|
|
|
for i:=0; i< nbitsQ; i++ {
|
|
Q[i] = new(bn256.G1).ScalarBaseMult(big.NewInt(0))
|
|
}
|
|
|
|
// Perform bitwise addition
|
|
for j:=0; j < ntables-1; j++ {
|
|
table.NewTableG1( a[j*gsize:(j+1)*gsize], gsize)
|
|
msb := getMsb(k_ext[j*gsize:(j+1)*gsize])
|
|
|
|
for i := msb-1; i >= 0; i-- {
|
|
b := getBit(k_ext[j*gsize:(j+1)*gsize],i)
|
|
if b != 0 {
|
|
// TODO. bn256 doesn't export mixed addition (Jacobian + Affine), which is more efficient.
|
|
Q[i].Add(Q[i], table.data[b])
|
|
}
|
|
}
|
|
}
|
|
table.NewTableG1( a[(ntables-1)*gsize:], gsize)
|
|
msb := getMsb(k_ext[(ntables-1)*gsize:])
|
|
|
|
for i := msb-1; i >= 0; i-- {
|
|
b := getBit(k_ext[(ntables-1)*gsize:],i)
|
|
if b != 0 {
|
|
// TODO. bn256 doesn't export mixed addition (Jacobian + Affine), which is more efficient.
|
|
Q[i].Add(Q[i], table.data[b])
|
|
}
|
|
}
|
|
|
|
// Consolidate Addition
|
|
R := new(bn256.G1).Set(Q[nbitsQ-1])
|
|
for i:=nbitsQ-1; i>0; i-- {
|
|
// TODO. bn256 doesn't export double operation. We will need to fork repo and export it
|
|
R = new(bn256.G1).Add(R,R)
|
|
R.Add(R,Q[i-1])
|
|
}
|
|
if Q_prev != nil {
|
|
return R.Add(R,Q_prev)
|
|
} else {
|
|
return R
|
|
}
|
|
}
|
|
|
|
/////
|
|
|
|
// TODO - How can avoid replicating code in G2?
|
|
//G2
|
|
|
|
type TableG2 struct{
|
|
data []*bn256.G2
|
|
}
|
|
|
|
|
|
func (t TableG2) GetData() []*bn256.G2 {
|
|
return t.data
|
|
}
|
|
|
|
|
|
// Compute table of gsize elements as ::
|
|
// Table[0] = Inf
|
|
// Table[1] = a[0]
|
|
// Table[2] = a[1]
|
|
// Table[3] = a[0]+a[1]
|
|
// .....
|
|
// Table[(1<<gsize)-1] = a[0]+a[1]+...+a[gsize-1]
|
|
func (t *TableG2) NewTableG2(a []*bn256.G2, gsize int){
|
|
// EC table
|
|
table := make([]*bn256.G2, 0)
|
|
|
|
// We need at least gsize elements. If not enough, fill with 0
|
|
a_ext := make([]*bn256.G2, 0)
|
|
a_ext = append(a_ext, a...)
|
|
|
|
for i:=len(a); i<gsize; i++ {
|
|
a_ext = append(a_ext,new(bn256.G2).ScalarBaseMult(big.NewInt(0)))
|
|
}
|
|
|
|
elG2 := new(bn256.G2).ScalarBaseMult(big.NewInt(0))
|
|
table = append(table,elG2)
|
|
last_pow2 := 1
|
|
nelems := 0
|
|
for i :=1; i< 1<<gsize; i++ {
|
|
elG2 := new(bn256.G2)
|
|
// if power of 2
|
|
if i & (i-1) == 0{
|
|
last_pow2 = i
|
|
elG2.Set(a_ext[nelems])
|
|
nelems++
|
|
} else {
|
|
elG2.Add(table[last_pow2], table[i-last_pow2])
|
|
// TODO bn256 doesn't export MakeAffine function. We need to fork repo
|
|
//table[i].MakeAffine()
|
|
}
|
|
table = append(table, elG2)
|
|
}
|
|
t.data = table
|
|
}
|
|
|
|
// Multiply scalar by precomputed table of G2 elements
|
|
func (t *TableG2) MulTableG2(k []*big.Int, Q_prev *bn256.G2, gsize int) *bn256.G2 {
|
|
// We need at least gsize elements. If not enough, fill with 0
|
|
k_ext := make([]*big.Int, 0)
|
|
k_ext = append(k_ext, k...)
|
|
|
|
for i:=len(k); i < gsize; i++ {
|
|
k_ext = append(k_ext,new(big.Int).SetUint64(0))
|
|
}
|
|
|
|
Q := new(bn256.G2).ScalarBaseMult(big.NewInt(0))
|
|
|
|
msb := getMsb(k_ext)
|
|
|
|
for i := msb-1; i >= 0; i-- {
|
|
// TODO. bn256 doesn't export double operation. We will need to fork repo and export it
|
|
Q = new(bn256.G2).Add(Q,Q)
|
|
b := getBit(k_ext,i)
|
|
if b != 0 {
|
|
// TODO. bn256 doesn't export mixed addition (Jacobian + Affine), which is more efficient.
|
|
Q.Add(Q, t.data[b])
|
|
}
|
|
}
|
|
if Q_prev != nil {
|
|
return Q.Add(Q, Q_prev)
|
|
} else {
|
|
return Q
|
|
}
|
|
}
|
|
|
|
// Multiply scalar by precomputed table of G2 elements without intermediate doubling
|
|
func MulTableNoDoubleG2(t []TableG2, k []*big.Int, Q_prev *bn256.G2, gsize int) *bn256.G2 {
|
|
// We need at least gsize elements. If not enough, fill with 0
|
|
min_nelems := len(t) * gsize
|
|
k_ext := make([]*big.Int, 0)
|
|
k_ext = append(k_ext, k...)
|
|
for i := len(k); i < min_nelems; i++ {
|
|
k_ext = append(k_ext,new(big.Int).SetUint64(0))
|
|
}
|
|
// Init Adders
|
|
nbitsQ := cryptoConstants.Q.BitLen()
|
|
Q := make([]*bn256.G2,nbitsQ)
|
|
|
|
for i:=0; i< nbitsQ; i++ {
|
|
Q[i] = new(bn256.G2).ScalarBaseMult(big.NewInt(0))
|
|
}
|
|
|
|
// Perform bitwise addition
|
|
for j:=0; j < len(t); j++ {
|
|
msb := getMsb(k_ext[j*gsize:(j+1)*gsize])
|
|
|
|
for i := msb-1; i >= 0; i-- {
|
|
b := getBit(k_ext[j*gsize:(j+1)*gsize],i)
|
|
if b != 0 {
|
|
// TODO. bn256 doesn't export mixed addition (Jacobian + Affine), which is more efficient.
|
|
Q[i].Add(Q[i], t[j].data[b])
|
|
}
|
|
}
|
|
}
|
|
|
|
// Consolidate Addition
|
|
R := new(bn256.G2).Set(Q[nbitsQ-1])
|
|
for i:=nbitsQ-1; i>0; i-- {
|
|
// TODO. bn256 doesn't export double operation. We will need to fork repo and export it
|
|
R = new(bn256.G2).Add(R,R)
|
|
R.Add(R,Q[i-1])
|
|
}
|
|
if Q_prev != nil {
|
|
return R.Add(R,Q_prev)
|
|
} else {
|
|
return R
|
|
}
|
|
}
|
|
|
|
// Compute tables within function. This solution should still be faster than std multiplication
|
|
// for gsize = 7
|
|
func ScalarMultG2(a []*bn256.G2, k []*big.Int, Q_prev *bn256.G2, gsize int) *bn256.G2 {
|
|
ntables := int((len(a) + gsize - 1) / gsize)
|
|
table := TableG2{}
|
|
Q:= new(bn256.G2).ScalarBaseMult(new(big.Int))
|
|
|
|
for i:=0; i<ntables-1; i++ {
|
|
table.NewTableG2( a[i*gsize:(i+1)*gsize], gsize)
|
|
Q = table.MulTableG2(k[i*gsize:(i+1)*gsize], Q, gsize)
|
|
}
|
|
table.NewTableG2( a[(ntables-1)*gsize:], gsize)
|
|
Q = table.MulTableG2(k[(ntables-1)*gsize:], Q, gsize)
|
|
|
|
if Q_prev != nil {
|
|
return Q.Add(Q,Q_prev)
|
|
} else {
|
|
return Q
|
|
}
|
|
}
|
|
|
|
// Multiply scalar by precomputed table of G2 elements without intermediate doubling
|
|
func ScalarMultNoDoubleG2(a []*bn256.G2, k []*big.Int, Q_prev *bn256.G2, gsize int) *bn256.G2 {
|
|
ntables := int((len(a) + gsize - 1) / gsize)
|
|
table := TableG2{}
|
|
|
|
// We need at least gsize elements. If not enough, fill with 0
|
|
min_nelems := ntables * gsize
|
|
k_ext := make([]*big.Int, 0)
|
|
k_ext = append(k_ext, k...)
|
|
for i := len(k); i < min_nelems; i++ {
|
|
k_ext = append(k_ext,new(big.Int).SetUint64(0))
|
|
}
|
|
// Init Adders
|
|
nbitsQ := cryptoConstants.Q.BitLen()
|
|
Q := make([]*bn256.G2,nbitsQ)
|
|
|
|
for i:=0; i< nbitsQ; i++ {
|
|
Q[i] = new(bn256.G2).ScalarBaseMult(big.NewInt(0))
|
|
}
|
|
|
|
// Perform bitwise addition
|
|
for j:=0; j < ntables-1; j++ {
|
|
table.NewTableG2( a[j*gsize:(j+1)*gsize], gsize)
|
|
msb := getMsb(k_ext[j*gsize:(j+1)*gsize])
|
|
|
|
for i := msb-1; i >= 0; i-- {
|
|
b := getBit(k_ext[j*gsize:(j+1)*gsize],i)
|
|
if b != 0 {
|
|
// TODO. bn256 doesn't export mixed addition (Jacobian + Affine), which is more efficient.
|
|
Q[i].Add(Q[i], table.data[b])
|
|
}
|
|
}
|
|
}
|
|
table.NewTableG2( a[(ntables-1)*gsize:], gsize)
|
|
msb := getMsb(k_ext[(ntables-1)*gsize:])
|
|
|
|
for i := msb-1; i >= 0; i-- {
|
|
b := getBit(k_ext[(ntables-1)*gsize:],i)
|
|
if b != 0 {
|
|
// TODO. bn256 doesn't export mixed addition (Jacobian + Affine), which is more efficient.
|
|
Q[i].Add(Q[i], table.data[b])
|
|
}
|
|
}
|
|
|
|
// Consolidate Addition
|
|
R := new(bn256.G2).Set(Q[nbitsQ-1])
|
|
for i:=nbitsQ-1; i>0; i-- {
|
|
// TODO. bn256 doesn't export double operation. We will need to fork repo and export it
|
|
R = new(bn256.G2).Add(R,R)
|
|
R.Add(R,Q[i-1])
|
|
}
|
|
if Q_prev != nil {
|
|
return R.Add(R,Q_prev)
|
|
} else {
|
|
return R
|
|
}
|
|
}
|
|
|
|
// Return most significant bit position in a group of Big Integers
|
|
func getMsb(k []*big.Int) int{
|
|
msb := 0
|
|
|
|
for _, el := range(k){
|
|
tmp_msb := el.BitLen()
|
|
if tmp_msb > msb {
|
|
msb = tmp_msb
|
|
}
|
|
}
|
|
return msb
|
|
}
|
|
|
|
// Return ith bit in group of Big Integers
|
|
func getBit(k []*big.Int, i int) uint {
|
|
table_idx := uint(0)
|
|
|
|
for idx, el := range(k){
|
|
b := el.Bit(i)
|
|
table_idx += (b << idx)
|
|
}
|
|
return table_idx
|
|
}
|