You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

463 lines
12 KiB

package prover
import (
"math/big"
bn256 "github.com/ethereum/go-ethereum/crypto/bn256/cloudflare"
cryptoConstants "github.com/iden3/go-iden3-crypto/constants"
)
type tableG1 struct {
data []*bn256.G1
}
func (t tableG1) getData() []*bn256.G1 {
return t.data
}
// Compute table of gsize elements as ::
// Table[0] = Inf
// Table[1] = a[0]
// Table[2] = a[1]
// Table[3] = a[0]+a[1]
// .....
// Table[(1<<gsize)-1] = a[0]+a[1]+...+a[gsize-1]
func (t *tableG1) newTableG1(a []*bn256.G1, gsize int, toaffine bool) {
// EC table
table := make([]*bn256.G1, 0)
// We need at least gsize elements. If not enough, fill with 0
aExt := make([]*bn256.G1, 0)
aExt = append(aExt, a...)
for i := len(a); i < gsize; i++ {
aExt = append(aExt, new(bn256.G1).ScalarBaseMult(big.NewInt(0)))
}
elG1 := new(bn256.G1).ScalarBaseMult(big.NewInt(0))
table = append(table, elG1)
lastPow2 := 1
nelems := 0
for i := 1; i < 1<<gsize; i++ {
elG1 := new(bn256.G1)
// if power of 2
if i&(i-1) == 0 {
lastPow2 = i
elG1.Set(aExt[nelems])
nelems++
} else {
elG1.Add(table[lastPow2], table[i-lastPow2])
// TODO bn256 doesn't export MakeAffine function. We need to fork repo
//table[i].MakeAffine()
}
table = append(table, elG1)
}
if toaffine {
for i := 0; i < len(table); i++ {
info := table[i].Marshal()
table[i].Unmarshal(info)
}
}
t.data = table
}
func (t tableG1) Marshal() []byte {
info := make([]byte, 0)
for _, el := range t.data {
info = append(info, el.Marshal()...)
}
return info
}
// Multiply scalar by precomputed table of G1 elements
func (t *tableG1) mulTableG1(k []*big.Int, qPrev *bn256.G1, gsize int) *bn256.G1 {
// We need at least gsize elements. If not enough, fill with 0
kExt := make([]*big.Int, 0)
kExt = append(kExt, k...)
for i := len(k); i < gsize; i++ {
kExt = append(kExt, new(big.Int).SetUint64(0))
}
Q := new(bn256.G1).ScalarBaseMult(big.NewInt(0))
msb := getMsb(kExt)
for i := msb - 1; i >= 0; i-- {
// TODO. bn256 doesn't export double operation. We will need to fork repo and export it
Q = new(bn256.G1).Add(Q, Q)
b := getBit(kExt, i)
if b != 0 {
// TODO. bn256 doesn't export mixed addition (Jacobian + Affine), which is more efficient.
Q.Add(Q, t.data[b])
}
}
if qPrev != nil {
return Q.Add(Q, qPrev)
}
return Q
}
// Multiply scalar by precomputed table of G1 elements without intermediate doubling
func mulTableNoDoubleG1(t []tableG1, k []*big.Int, qPrev *bn256.G1, gsize int) *bn256.G1 {
// We need at least gsize elements. If not enough, fill with 0
minNElems := len(t) * gsize
kExt := make([]*big.Int, 0)
kExt = append(kExt, k...)
for i := len(k); i < minNElems; i++ {
kExt = append(kExt, new(big.Int).SetUint64(0))
}
// Init Adders
nbitsQ := cryptoConstants.Q.BitLen()
Q := make([]*bn256.G1, nbitsQ)
for i := 0; i < nbitsQ; i++ {
Q[i] = new(bn256.G1).ScalarBaseMult(big.NewInt(0))
}
// Perform bitwise addition
for j := 0; j < len(t); j++ {
msb := getMsb(kExt[j*gsize : (j+1)*gsize])
for i := msb - 1; i >= 0; i-- {
b := getBit(kExt[j*gsize:(j+1)*gsize], i)
if b != 0 {
// TODO. bn256 doesn't export mixed addition (Jacobian + Affine), which is more efficient.
Q[i].Add(Q[i], t[j].data[b])
}
}
}
// Consolidate Addition
R := new(bn256.G1).Set(Q[nbitsQ-1])
for i := nbitsQ - 1; i > 0; i-- {
// TODO. bn256 doesn't export double operation. We will need to fork repo and export it
R = new(bn256.G1).Add(R, R)
R.Add(R, Q[i-1])
}
if qPrev != nil {
return R.Add(R, qPrev)
}
return R
}
// Compute tables within function. This solution should still be faster than std multiplication
// for gsize = 7
func scalarMultG1(a []*bn256.G1, k []*big.Int, qPrev *bn256.G1, gsize int) *bn256.G1 {
ntables := int((len(a) + gsize - 1) / gsize)
table := tableG1{}
Q := new(bn256.G1).ScalarBaseMult(new(big.Int))
for i := 0; i < ntables-1; i++ {
table.newTableG1(a[i*gsize:(i+1)*gsize], gsize, false)
Q = table.mulTableG1(k[i*gsize:(i+1)*gsize], Q, gsize)
}
table.newTableG1(a[(ntables-1)*gsize:], gsize, false)
Q = table.mulTableG1(k[(ntables-1)*gsize:], Q, gsize)
if qPrev != nil {
return Q.Add(Q, qPrev)
}
return Q
}
// Multiply scalar by precomputed table of G1 elements without intermediate doubling
func scalarMultNoDoubleG1(a []*bn256.G1, k []*big.Int, qPrev *bn256.G1, gsize int) *bn256.G1 {
ntables := int((len(a) + gsize - 1) / gsize)
table := tableG1{}
// We need at least gsize elements. If not enough, fill with 0
minNElems := ntables * gsize
kExt := make([]*big.Int, 0)
kExt = append(kExt, k...)
for i := len(k); i < minNElems; i++ {
kExt = append(kExt, new(big.Int).SetUint64(0))
}
// Init Adders
nbitsQ := cryptoConstants.Q.BitLen()
Q := make([]*bn256.G1, nbitsQ)
for i := 0; i < nbitsQ; i++ {
Q[i] = new(bn256.G1).ScalarBaseMult(big.NewInt(0))
}
// Perform bitwise addition
for j := 0; j < ntables-1; j++ {
table.newTableG1(a[j*gsize:(j+1)*gsize], gsize, false)
msb := getMsb(kExt[j*gsize : (j+1)*gsize])
for i := msb - 1; i >= 0; i-- {
b := getBit(kExt[j*gsize:(j+1)*gsize], i)
if b != 0 {
// TODO. bn256 doesn't export mixed addition (Jacobian + Affine), which is more efficient.
Q[i].Add(Q[i], table.data[b])
}
}
}
table.newTableG1(a[(ntables-1)*gsize:], gsize, false)
msb := getMsb(kExt[(ntables-1)*gsize:])
for i := msb - 1; i >= 0; i-- {
b := getBit(kExt[(ntables-1)*gsize:], i)
if b != 0 {
// TODO. bn256 doesn't export mixed addition (Jacobian + Affine), which is more efficient.
Q[i].Add(Q[i], table.data[b])
}
}
// Consolidate Addition
R := new(bn256.G1).Set(Q[nbitsQ-1])
for i := nbitsQ - 1; i > 0; i-- {
// TODO. bn256 doesn't export double operation. We will need to fork repo and export it
R = new(bn256.G1).Add(R, R)
R.Add(R, Q[i-1])
}
if qPrev != nil {
return R.Add(R, qPrev)
}
return R
}
/////
// TODO - How can avoid replicating code in G2?
//G2
type tableG2 struct {
data []*bn256.G2
}
func (t tableG2) getData() []*bn256.G2 {
return t.data
}
// Compute table of gsize elements as ::
// Table[0] = Inf
// Table[1] = a[0]
// Table[2] = a[1]
// Table[3] = a[0]+a[1]
// .....
// Table[(1<<gsize)-1] = a[0]+a[1]+...+a[gsize-1]
// TODO -> toaffine = True doesnt work. Problem with Marshal/Unmarshal
func (t *tableG2) newTableG2(a []*bn256.G2, gsize int, toaffine bool) {
// EC table
table := make([]*bn256.G2, 0)
// We need at least gsize elements. If not enough, fill with 0
aExt := make([]*bn256.G2, 0)
aExt = append(aExt, a...)
for i := len(a); i < gsize; i++ {
aExt = append(aExt, new(bn256.G2).ScalarBaseMult(big.NewInt(0)))
}
elG2 := new(bn256.G2).ScalarBaseMult(big.NewInt(0))
table = append(table, elG2)
lastPow2 := 1
nelems := 0
for i := 1; i < 1<<gsize; i++ {
elG2 := new(bn256.G2)
// if power of 2
if i&(i-1) == 0 {
lastPow2 = i
elG2.Set(aExt[nelems])
nelems++
} else {
elG2.Add(table[lastPow2], table[i-lastPow2])
// TODO bn256 doesn't export MakeAffine function. We need to fork repo
//table[i].MakeAffine()
}
table = append(table, elG2)
}
if toaffine {
for i := 0; i < len(table); i++ {
info := table[i].Marshal()
table[i].Unmarshal(info)
}
}
t.data = table
}
func (t tableG2) Marshal() []byte {
info := make([]byte, 0)
for _, el := range t.data {
info = append(info, el.Marshal()...)
}
return info
}
// Multiply scalar by precomputed table of G2 elements
func (t *tableG2) mulTableG2(k []*big.Int, qPrev *bn256.G2, gsize int) *bn256.G2 {
// We need at least gsize elements. If not enough, fill with 0
kExt := make([]*big.Int, 0)
kExt = append(kExt, k...)
for i := len(k); i < gsize; i++ {
kExt = append(kExt, new(big.Int).SetUint64(0))
}
Q := new(bn256.G2).ScalarBaseMult(big.NewInt(0))
msb := getMsb(kExt)
for i := msb - 1; i >= 0; i-- {
// TODO. bn256 doesn't export double operation. We will need to fork repo and export it
Q = new(bn256.G2).Add(Q, Q)
b := getBit(kExt, i)
if b != 0 {
// TODO. bn256 doesn't export mixed addition (Jacobian + Affine), which is more efficient.
Q.Add(Q, t.data[b])
}
}
if qPrev != nil {
return Q.Add(Q, qPrev)
}
return Q
}
// Multiply scalar by precomputed table of G2 elements without intermediate doubling
func mulTableNoDoubleG2(t []tableG2, k []*big.Int, qPrev *bn256.G2, gsize int) *bn256.G2 {
// We need at least gsize elements. If not enough, fill with 0
minNElems := len(t) * gsize
kExt := make([]*big.Int, 0)
kExt = append(kExt, k...)
for i := len(k); i < minNElems; i++ {
kExt = append(kExt, new(big.Int).SetUint64(0))
}
// Init Adders
nbitsQ := cryptoConstants.Q.BitLen()
Q := make([]*bn256.G2, nbitsQ)
for i := 0; i < nbitsQ; i++ {
Q[i] = new(bn256.G2).ScalarBaseMult(big.NewInt(0))
}
// Perform bitwise addition
for j := 0; j < len(t); j++ {
msb := getMsb(kExt[j*gsize : (j+1)*gsize])
for i := msb - 1; i >= 0; i-- {
b := getBit(kExt[j*gsize:(j+1)*gsize], i)
if b != 0 {
// TODO. bn256 doesn't export mixed addition (Jacobian + Affine), which is more efficient.
Q[i].Add(Q[i], t[j].data[b])
}
}
}
// Consolidate Addition
R := new(bn256.G2).Set(Q[nbitsQ-1])
for i := nbitsQ - 1; i > 0; i-- {
// TODO. bn256 doesn't export double operation. We will need to fork repo and export it
R = new(bn256.G2).Add(R, R)
R.Add(R, Q[i-1])
}
if qPrev != nil {
return R.Add(R, qPrev)
}
return R
}
// Compute tables within function. This solution should still be faster than std multiplication
// for gsize = 7
func scalarMultG2(a []*bn256.G2, k []*big.Int, qPrev *bn256.G2, gsize int) *bn256.G2 {
ntables := int((len(a) + gsize - 1) / gsize)
table := tableG2{}
Q := new(bn256.G2).ScalarBaseMult(new(big.Int))
for i := 0; i < ntables-1; i++ {
table.newTableG2(a[i*gsize:(i+1)*gsize], gsize, false)
Q = table.mulTableG2(k[i*gsize:(i+1)*gsize], Q, gsize)
}
table.newTableG2(a[(ntables-1)*gsize:], gsize, false)
Q = table.mulTableG2(k[(ntables-1)*gsize:], Q, gsize)
if qPrev != nil {
return Q.Add(Q, qPrev)
}
return Q
}
// Multiply scalar by precomputed table of G2 elements without intermediate doubling
func scalarMultNoDoubleG2(a []*bn256.G2, k []*big.Int, qPrev *bn256.G2, gsize int) *bn256.G2 {
ntables := int((len(a) + gsize - 1) / gsize)
table := tableG2{}
// We need at least gsize elements. If not enough, fill with 0
minNElems := ntables * gsize
kExt := make([]*big.Int, 0)
kExt = append(kExt, k...)
for i := len(k); i < minNElems; i++ {
kExt = append(kExt, new(big.Int).SetUint64(0))
}
// Init Adders
nbitsQ := cryptoConstants.Q.BitLen()
Q := make([]*bn256.G2, nbitsQ)
for i := 0; i < nbitsQ; i++ {
Q[i] = new(bn256.G2).ScalarBaseMult(big.NewInt(0))
}
// Perform bitwise addition
for j := 0; j < ntables-1; j++ {
table.newTableG2(a[j*gsize:(j+1)*gsize], gsize, false)
msb := getMsb(kExt[j*gsize : (j+1)*gsize])
for i := msb - 1; i >= 0; i-- {
b := getBit(kExt[j*gsize:(j+1)*gsize], i)
if b != 0 {
// TODO. bn256 doesn't export mixed addition (Jacobian + Affine), which is more efficient.
Q[i].Add(Q[i], table.data[b])
}
}
}
table.newTableG2(a[(ntables-1)*gsize:], gsize, false)
msb := getMsb(kExt[(ntables-1)*gsize:])
for i := msb - 1; i >= 0; i-- {
b := getBit(kExt[(ntables-1)*gsize:], i)
if b != 0 {
// TODO. bn256 doesn't export mixed addition (Jacobian + Affine), which is more efficient.
Q[i].Add(Q[i], table.data[b])
}
}
// Consolidate Addition
R := new(bn256.G2).Set(Q[nbitsQ-1])
for i := nbitsQ - 1; i > 0; i-- {
// TODO. bn256 doesn't export double operation. We will need to fork repo and export it
R = new(bn256.G2).Add(R, R)
R.Add(R, Q[i-1])
}
if qPrev != nil {
return R.Add(R, qPrev)
}
return R
}
// Return most significant bit position in a group of Big Integers
func getMsb(k []*big.Int) int {
msb := 0
for _, el := range k {
tmpMsb := el.BitLen()
if tmpMsb > msb {
msb = tmpMsb
}
}
return msb
}
// Return ith bit in group of Big Integers
func getBit(k []*big.Int, i int) uint {
tableIdx := uint(0)
for idx, el := range k {
b := el.Bit(i)
tableIdx += (b << idx)
}
return tableIdx
}