package prover
|
|
|
|
import (
|
|
"crypto/rand"
|
|
"math/big"
|
|
|
|
bn256 "github.com/ethereum/go-ethereum/crypto/bn256/cloudflare"
|
|
"github.com/iden3/go-circom-prover-verifier/types"
|
|
)
|
|
|
|
// Proof is the data structure of the Groth16 zkSNARK proof
|
|
type Proof struct {
|
|
A *bn256.G1
|
|
B *bn256.G2
|
|
C *bn256.G1
|
|
}
|
|
|
|
// Pk holds the data structure of the ProvingKey
|
|
type Pk struct {
|
|
A []*bn256.G1
|
|
B2 []*bn256.G2
|
|
B1 []*bn256.G1
|
|
C []*bn256.G1
|
|
NVars int
|
|
NPublic int
|
|
VkAlpha1 *bn256.G1
|
|
VkDelta1 *bn256.G1
|
|
VkBeta1 *bn256.G1
|
|
VkBeta2 *bn256.G2
|
|
VkDelta2 *bn256.G2
|
|
HExps []*bn256.G1
|
|
DomainSize int
|
|
PolsA []map[int]*big.Int
|
|
PolsB []map[int]*big.Int
|
|
PolsC []map[int]*big.Int
|
|
}
|
|
|
|
// Witness contains the witness
|
|
type Witness []*big.Int
|
|
|
|
// R is the mod of the finite field
|
|
var R, _ = new(big.Int).SetString("21888242871839275222246405745257275088548364400416034343698204186575808495617", 10)
|
|
|
|
func randBigInt() (*big.Int, error) {
|
|
maxbits := R.BitLen()
|
|
b := make([]byte, (maxbits/8)-1)
|
|
_, err := rand.Read(b)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
r := new(big.Int).SetBytes(b)
|
|
rq := new(big.Int).Mod(r, R)
|
|
|
|
return rq, nil
|
|
}
|
|
|
|
// GenerateProof generates the Groth16 zkSNARK proof
|
|
func GenerateProof(pk *types.Pk, w types.Witness) (*types.Proof, []*big.Int, error) {
|
|
var proof types.Proof
|
|
|
|
r, err := randBigInt()
|
|
if err != nil {
|
|
return nil, nil, err
|
|
}
|
|
s, err := randBigInt()
|
|
if err != nil {
|
|
return nil, nil, err
|
|
}
|
|
|
|
proof.A = new(bn256.G1).ScalarBaseMult(big.NewInt(0))
|
|
proof.B = new(bn256.G2).ScalarBaseMult(big.NewInt(0))
|
|
proof.C = new(bn256.G1).ScalarBaseMult(big.NewInt(0))
|
|
proofBG1 := new(bn256.G1).ScalarBaseMult(big.NewInt(0))
|
|
|
|
for i := 0; i < pk.NVars; i++ {
|
|
proof.A = new(bn256.G1).Add(proof.A, new(bn256.G1).ScalarMult(pk.A[i], w[i]))
|
|
proof.B = new(bn256.G2).Add(proof.B, new(bn256.G2).ScalarMult(pk.B2[i], w[i]))
|
|
proofBG1 = new(bn256.G1).Add(proofBG1, new(bn256.G1).ScalarMult(pk.B1[i], w[i]))
|
|
}
|
|
|
|
for i := pk.NPublic + 1; i < pk.NVars; i++ {
|
|
proof.C = new(bn256.G1).Add(proof.C, new(bn256.G1).ScalarMult(pk.C[i], w[i]))
|
|
}
|
|
|
|
proof.A = new(bn256.G1).Add(proof.A, pk.VkAlpha1)
|
|
proof.A = new(bn256.G1).Add(proof.A, new(bn256.G1).ScalarMult(pk.VkDelta1, r))
|
|
|
|
proof.B = new(bn256.G2).Add(proof.B, pk.VkBeta2)
|
|
proof.B = new(bn256.G2).Add(proof.B, new(bn256.G2).ScalarMult(pk.VkDelta2, s))
|
|
|
|
proofBG1 = new(bn256.G1).Add(proofBG1, pk.VkBeta1)
|
|
proofBG1 = new(bn256.G1).Add(proofBG1, new(bn256.G1).ScalarMult(pk.VkDelta1, s))
|
|
|
|
h := calculateH(pk, w)
|
|
|
|
for i := 0; i < len(h); i++ {
|
|
proof.C = new(bn256.G1).Add(proof.C, new(bn256.G1).ScalarMult(pk.HExps[i], h[i]))
|
|
}
|
|
proof.C = new(bn256.G1).Add(proof.C, new(bn256.G1).ScalarMult(proof.A, s))
|
|
proof.C = new(bn256.G1).Add(proof.C, new(bn256.G1).ScalarMult(proofBG1, r))
|
|
rsneg := new(big.Int).Mod(new(big.Int).Neg(new(big.Int).Mul(r, s)), R) // fAdd & fMul
|
|
proof.C = new(bn256.G1).Add(proof.C, new(bn256.G1).ScalarMult(pk.VkDelta1, rsneg))
|
|
|
|
pubSignals := w[1 : pk.NPublic+1]
|
|
|
|
return &proof, pubSignals, nil
|
|
}
|
|
|
|
func calculateH(pk *types.Pk, w types.Witness) []*big.Int {
|
|
m := pk.DomainSize
|
|
polAT := arrayOfZeroes(m)
|
|
polBT := arrayOfZeroes(m)
|
|
polCT := arrayOfZeroes(m)
|
|
|
|
for i := 0; i < pk.NVars; i++ {
|
|
for j := range pk.PolsA[i] {
|
|
polAT[j] = fAdd(polAT[j], fMul(w[i], pk.PolsA[i][j]))
|
|
}
|
|
for j := range pk.PolsB[i] {
|
|
polBT[j] = fAdd(polBT[j], fMul(w[i], pk.PolsB[i][j]))
|
|
}
|
|
for j := range pk.PolsC[i] {
|
|
polCT[j] = fAdd(polCT[j], fMul(w[i], pk.PolsC[i][j]))
|
|
}
|
|
}
|
|
polAS := ifft(polAT)
|
|
polBS := ifft(polBT)
|
|
|
|
polABS := polynomialMul(polAS, polBS)
|
|
polCS := ifft(polCT)
|
|
polABCS := polynomialSub(polABS, polCS)
|
|
|
|
hS := polABCS[m:]
|
|
return hS
|
|
}
|