package prover
|
|
|
|
import (
|
|
"crypto/rand"
|
|
"math"
|
|
"math/big"
|
|
"runtime"
|
|
"sync"
|
|
|
|
bn256 "github.com/ethereum/go-ethereum/crypto/bn256/cloudflare"
|
|
"github.com/iden3/go-circom-prover-verifier/types"
|
|
"github.com/iden3/go-iden3-crypto/utils"
|
|
//"fmt"
|
|
)
|
|
|
|
// Proof is the data structure of the Groth16 zkSNARK proof
|
|
type Proof struct {
|
|
A *bn256.G1
|
|
B *bn256.G2
|
|
C *bn256.G1
|
|
}
|
|
|
|
// Pk holds the data structure of the ProvingKey
|
|
type Pk struct {
|
|
A []*bn256.G1
|
|
B2 []*bn256.G2
|
|
B1 []*bn256.G1
|
|
C []*bn256.G1
|
|
NVars int
|
|
NPublic int
|
|
VkAlpha1 *bn256.G1
|
|
VkDelta1 *bn256.G1
|
|
VkBeta1 *bn256.G1
|
|
VkBeta2 *bn256.G2
|
|
VkDelta2 *bn256.G2
|
|
HExps []*bn256.G1
|
|
DomainSize int
|
|
PolsA []map[int]*big.Int
|
|
PolsB []map[int]*big.Int
|
|
PolsC []map[int]*big.Int
|
|
}
|
|
|
|
// Witness contains the witness
|
|
type Witness []*big.Int
|
|
|
|
// Group Size
|
|
const (
|
|
GSIZE = 6
|
|
)
|
|
|
|
func randBigInt() (*big.Int, error) {
|
|
maxbits := types.R.BitLen()
|
|
b := make([]byte, (maxbits/8)-1)
|
|
_, err := rand.Read(b)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
r := new(big.Int).SetBytes(b)
|
|
rq := new(big.Int).Mod(r, types.R)
|
|
|
|
return rq, nil
|
|
}
|
|
|
|
// GenerateProof generates the Groth16 zkSNARK proof
|
|
func GenerateProof(pk *types.Pk, w types.Witness) (*types.Proof, []*big.Int, error) {
|
|
var proof types.Proof
|
|
|
|
r, err := randBigInt()
|
|
if err != nil {
|
|
return nil, nil, err
|
|
}
|
|
s, err := randBigInt()
|
|
if err != nil {
|
|
return nil, nil, err
|
|
}
|
|
|
|
// BEGIN PAR
|
|
numcpu := runtime.NumCPU()
|
|
|
|
proofA := arrayOfZeroesG1(numcpu)
|
|
proofB := arrayOfZeroesG2(numcpu)
|
|
proofC := arrayOfZeroesG1(numcpu)
|
|
proofBG1 := arrayOfZeroesG1(numcpu)
|
|
gsize := GSIZE
|
|
var wg1 sync.WaitGroup
|
|
wg1.Add(numcpu)
|
|
for _cpu, _ranges := range ranges(pk.NVars, numcpu) {
|
|
// split 1
|
|
go func(cpu int, ranges [2]int) {
|
|
proofA[cpu] = ScalarMultNoDoubleG1(pk.A[ranges[0]:ranges[1]],
|
|
w[ranges[0]:ranges[1]],
|
|
proofA[cpu],
|
|
gsize)
|
|
proofB[cpu] = ScalarMultNoDoubleG2(pk.B2[ranges[0]:ranges[1]],
|
|
w[ranges[0]:ranges[1]],
|
|
proofB[cpu],
|
|
gsize)
|
|
proofBG1[cpu] = ScalarMultNoDoubleG1(pk.B1[ranges[0]:ranges[1]],
|
|
w[ranges[0]:ranges[1]],
|
|
proofBG1[cpu],
|
|
gsize)
|
|
min_lim := pk.NPublic+1
|
|
if ranges[0] > pk.NPublic+1 {
|
|
min_lim = ranges[0]
|
|
}
|
|
if ranges[1] > pk.NPublic + 1 {
|
|
proofC[cpu] = ScalarMultNoDoubleG1(pk.C[min_lim:ranges[1]],
|
|
w[min_lim:ranges[1]],
|
|
proofC[cpu],
|
|
gsize)
|
|
}
|
|
wg1.Done()
|
|
}(_cpu, _ranges)
|
|
}
|
|
wg1.Wait()
|
|
// join 1
|
|
for cpu := 1; cpu < numcpu; cpu++ {
|
|
proofA[0].Add(proofA[0], proofA[cpu])
|
|
proofB[0].Add(proofB[0], proofB[cpu])
|
|
proofC[0].Add(proofC[0], proofC[cpu])
|
|
proofBG1[0].Add(proofBG1[0], proofBG1[cpu])
|
|
}
|
|
proof.A = proofA[0]
|
|
proof.B = proofB[0]
|
|
proof.C = proofC[0]
|
|
// END PAR
|
|
|
|
h := calculateH(pk, w)
|
|
|
|
proof.A.Add(proof.A, pk.VkAlpha1)
|
|
proof.A.Add(proof.A, new(bn256.G1).ScalarMult(pk.VkDelta1, r))
|
|
|
|
proof.B.Add(proof.B, pk.VkBeta2)
|
|
proof.B.Add(proof.B, new(bn256.G2).ScalarMult(pk.VkDelta2, s))
|
|
|
|
proofBG1[0].Add(proofBG1[0], pk.VkBeta1)
|
|
proofBG1[0].Add(proofBG1[0], new(bn256.G1).ScalarMult(pk.VkDelta1, s))
|
|
|
|
proofC = arrayOfZeroesG1(numcpu)
|
|
var wg2 sync.WaitGroup
|
|
wg2.Add(numcpu)
|
|
for _cpu, _ranges := range ranges(len(h), numcpu) {
|
|
// split 2
|
|
go func(cpu int, ranges [2]int) {
|
|
proofC[cpu] = ScalarMultNoDoubleG1(pk.HExps[ranges[0]:ranges[1]],
|
|
h[ranges[0]:ranges[1]],
|
|
proofC[cpu],
|
|
gsize)
|
|
wg2.Done()
|
|
}(_cpu, _ranges)
|
|
}
|
|
wg2.Wait()
|
|
// join 2
|
|
for cpu := 1; cpu < numcpu; cpu++ {
|
|
proofC[0].Add(proofC[0], proofC[cpu])
|
|
}
|
|
proof.C.Add(proof.C, proofC[0])
|
|
|
|
proof.C.Add(proof.C, new(bn256.G1).ScalarMult(proof.A, s))
|
|
proof.C.Add(proof.C, new(bn256.G1).ScalarMult(proofBG1[0], r))
|
|
rsneg := new(big.Int).Mod(new(big.Int).Neg(new(big.Int).Mul(r, s)), types.R)
|
|
proof.C.Add(proof.C, new(bn256.G1).ScalarMult(pk.VkDelta1, rsneg))
|
|
|
|
pubSignals := w[1 : pk.NPublic+1]
|
|
|
|
return &proof, pubSignals, nil
|
|
}
|
|
|
|
func calculateH(pk *types.Pk, w types.Witness) []*big.Int {
|
|
m := pk.DomainSize
|
|
polAT := arrayOfZeroes(m)
|
|
polBT := arrayOfZeroes(m)
|
|
|
|
numcpu := runtime.NumCPU()
|
|
|
|
var wg1 sync.WaitGroup
|
|
wg1.Add(2)
|
|
go func() {
|
|
for i := 0; i < pk.NVars; i++ {
|
|
for j := range pk.PolsA[i] {
|
|
polAT[j] = fAdd(polAT[j], fMul(w[i], pk.PolsA[i][j]))
|
|
}
|
|
}
|
|
wg1.Done()
|
|
}()
|
|
go func() {
|
|
for i := 0; i < pk.NVars; i++ {
|
|
for j := range pk.PolsB[i] {
|
|
polBT[j] = fAdd(polBT[j], fMul(w[i], pk.PolsB[i][j]))
|
|
}
|
|
}
|
|
wg1.Done()
|
|
}()
|
|
wg1.Wait()
|
|
polATe := utils.BigIntArrayToElementArray(polAT)
|
|
polBTe := utils.BigIntArrayToElementArray(polBT)
|
|
|
|
polASe := ifft(polATe)
|
|
polBSe := ifft(polBTe)
|
|
|
|
r := int(math.Log2(float64(m))) + 1
|
|
roots := newRootsT()
|
|
roots.setRoots(r)
|
|
|
|
var wg2 sync.WaitGroup
|
|
wg2.Add(numcpu)
|
|
for _cpu, _ranges := range ranges(len(polASe), numcpu) {
|
|
go func(cpu int, ranges [2]int) {
|
|
for i := ranges[0]; i < ranges[1]; i++ {
|
|
polASe[i].Mul(polASe[i], roots.roots[r][i])
|
|
polBSe[i].Mul(polBSe[i], roots.roots[r][i])
|
|
}
|
|
wg2.Done()
|
|
}(_cpu, _ranges)
|
|
}
|
|
wg2.Wait()
|
|
|
|
polATodd := fft(polASe)
|
|
polBTodd := fft(polBSe)
|
|
|
|
polABT := arrayOfZeroesE(len(polASe) * 2)
|
|
var wg3 sync.WaitGroup
|
|
wg3.Add(numcpu)
|
|
for _cpu, _ranges := range ranges(len(polASe), numcpu) {
|
|
go func(cpu int, ranges [2]int) {
|
|
for i := ranges[0]; i < ranges[1]; i++ {
|
|
polABT[2*i].Mul(polATe[i], polBTe[i])
|
|
polABT[2*i+1].Mul(polATodd[i], polBTodd[i])
|
|
}
|
|
wg3.Done()
|
|
}(_cpu, _ranges)
|
|
}
|
|
wg3.Wait()
|
|
|
|
hSeFull := ifft(polABT)
|
|
|
|
hSe := hSeFull[m:]
|
|
return utils.ElementArrayToBigIntArray(hSe)
|
|
}
|
|
|
|
func ranges(n, parts int) [][2]int {
|
|
s := make([][2]int, parts)
|
|
p := float64(n) / float64(parts)
|
|
for i := 0; i < parts; i++ {
|
|
a, b := int(float64(i)*p), int(float64(i+1)*p)
|
|
s[i] = [2]int{a, b}
|
|
}
|
|
return s
|
|
}
|