You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

152 lines
4.1 KiB

package prover
import (
"crypto/rand"
"math"
"math/big"
bn256 "github.com/ethereum/go-ethereum/crypto/bn256/cloudflare"
"github.com/iden3/go-circom-prover-verifier/types"
"github.com/iden3/go-iden3-crypto/ff"
"github.com/iden3/go-iden3-crypto/utils"
)
// Proof is the data structure of the Groth16 zkSNARK proof
type Proof struct {
A *bn256.G1
B *bn256.G2
C *bn256.G1
}
// Pk holds the data structure of the ProvingKey
type Pk struct {
A []*bn256.G1
B2 []*bn256.G2
B1 []*bn256.G1
C []*bn256.G1
NVars int
NPublic int
VkAlpha1 *bn256.G1
VkDelta1 *bn256.G1
VkBeta1 *bn256.G1
VkBeta2 *bn256.G2
VkDelta2 *bn256.G2
HExps []*bn256.G1
DomainSize int
PolsA []map[int]*big.Int
PolsB []map[int]*big.Int
PolsC []map[int]*big.Int
}
// Witness contains the witness
type Witness []*big.Int
// R is the mod of the finite field
var R, _ = new(big.Int).SetString("21888242871839275222246405745257275088548364400416034343698204186575808495617", 10)
func randBigInt() (*big.Int, error) {
maxbits := R.BitLen()
b := make([]byte, (maxbits/8)-1)
_, err := rand.Read(b)
if err != nil {
return nil, err
}
r := new(big.Int).SetBytes(b)
rq := new(big.Int).Mod(r, R)
return rq, nil
}
// GenerateProof generates the Groth16 zkSNARK proof
func GenerateProof(pk *types.Pk, w types.Witness) (*types.Proof, []*big.Int, error) {
var proof types.Proof
r, err := randBigInt()
if err != nil {
return nil, nil, err
}
s, err := randBigInt()
if err != nil {
return nil, nil, err
}
proof.A = new(bn256.G1).ScalarBaseMult(big.NewInt(0))
proof.B = new(bn256.G2).ScalarBaseMult(big.NewInt(0))
proof.C = new(bn256.G1).ScalarBaseMult(big.NewInt(0))
proofBG1 := new(bn256.G1).ScalarBaseMult(big.NewInt(0))
for i := 0; i < pk.NVars; i++ {
proof.A = new(bn256.G1).Add(proof.A, new(bn256.G1).ScalarMult(pk.A[i], w[i]))
proof.B = new(bn256.G2).Add(proof.B, new(bn256.G2).ScalarMult(pk.B2[i], w[i]))
proofBG1 = new(bn256.G1).Add(proofBG1, new(bn256.G1).ScalarMult(pk.B1[i], w[i]))
}
for i := pk.NPublic + 1; i < pk.NVars; i++ {
proof.C = new(bn256.G1).Add(proof.C, new(bn256.G1).ScalarMult(pk.C[i], w[i]))
}
proof.A = new(bn256.G1).Add(proof.A, pk.VkAlpha1)
proof.A = new(bn256.G1).Add(proof.A, new(bn256.G1).ScalarMult(pk.VkDelta1, r))
proof.B = new(bn256.G2).Add(proof.B, pk.VkBeta2)
proof.B = new(bn256.G2).Add(proof.B, new(bn256.G2).ScalarMult(pk.VkDelta2, s))
proofBG1 = new(bn256.G1).Add(proofBG1, pk.VkBeta1)
proofBG1 = new(bn256.G1).Add(proofBG1, new(bn256.G1).ScalarMult(pk.VkDelta1, s))
h := calculateH(pk, w)
for i := 0; i < len(h); i++ {
proof.C = new(bn256.G1).Add(proof.C, new(bn256.G1).ScalarMult(pk.HExps[i], h[i]))
}
proof.C = new(bn256.G1).Add(proof.C, new(bn256.G1).ScalarMult(proof.A, s))
proof.C = new(bn256.G1).Add(proof.C, new(bn256.G1).ScalarMult(proofBG1, r))
rsneg := new(big.Int).Mod(new(big.Int).Neg(new(big.Int).Mul(r, s)), R) // fAdd & fMul
proof.C = new(bn256.G1).Add(proof.C, new(bn256.G1).ScalarMult(pk.VkDelta1, rsneg))
pubSignals := w[1 : pk.NPublic+1]
return &proof, pubSignals, nil
}
func calculateH(pk *types.Pk, w types.Witness) []*big.Int {
m := pk.DomainSize
polAT := arrayOfZeroes(m)
polBT := arrayOfZeroes(m)
for i := 0; i < pk.NVars; i++ {
for j := range pk.PolsA[i] {
polAT[j] = fAdd(polAT[j], fMul(w[i], pk.PolsA[i][j]))
}
for j := range pk.PolsB[i] {
polBT[j] = fAdd(polBT[j], fMul(w[i], pk.PolsB[i][j]))
}
}
polATe := utils.BigIntArrayToElementArray(polAT)
polBTe := utils.BigIntArrayToElementArray(polBT)
polASe := ifft(polATe)
polBSe := ifft(polBTe)
r := int(math.Log2(float64(m))) + 1
roots := newRootsT()
roots.setRoots(r)
for i := 0; i < len(polASe); i++ {
polASe[i] = ff.NewElement().Mul(polASe[i], roots.roots[r][i])
polBSe[i] = ff.NewElement().Mul(polBSe[i], roots.roots[r][i])
}
polATodd := fft(polASe)
polBTodd := fft(polBSe)
polABT := arrayOfZeroesE(len(polASe) * 2)
for i := 0; i < len(polASe); i++ {
polABT[2*i] = ff.NewElement().Mul(polATe[i], polBTe[i])
polABT[2*i+1] = ff.NewElement().Mul(polATodd[i], polBTodd[i])
}
hSeFull := ifft(polABT)
hSe := hSeFull[m:]
return ElementArrayToBigIntArray(hSe)
}