Browse Source

Update to goff v0.2.0

feature/goff-0-2-0
arnaucube 4 years ago
parent
commit
048941e5e0
9 changed files with 1444 additions and 205 deletions
  1. +6
    -1
      ff/arith.go
  2. +161
    -199
      ff/element.go
  3. +170
    -0
      ff/element_mul.go
  4. +39
    -0
      ff/element_mul_amd64.go
  5. +695
    -0
      ff/element_mul_amd64.s
  6. +93
    -0
      ff/element_square.go
  7. +34
    -0
      ff/element_square_amd64.go
  8. +245
    -5
      ff/element_test.go
  9. +1
    -0
      go.mod

+ 6
- 1
ff/arith.go

@ -12,14 +12,19 @@
// See the License for the specific language governing permissions and
// limitations under the License.
// Code generated by goff DO NOT EDIT
// Code generated by goff (v0.2.0) DO NOT EDIT
// Package ff contains field arithmetic operations
package ff
import (
"math/bits"
"golang.org/x/sys/cpu"
)
var supportAdx = cpu.X86.HasADX && cpu.X86.HasBMI2
func madd(a, b, t, u, v uint64) (uint64, uint64, uint64) {
var carry uint64
hi, lo := bits.Mul64(a, b)

+ 161
- 199
ff/element.go

@ -12,29 +12,33 @@
// See the License for the specific language governing permissions and
// limitations under the License.
// field modulus q =
//
// 21888242871839275222246405745257275088548364400416034343698204186575808495617
// Code generated by goff DO NOT EDIT
// goff version: - build:
// Element are assumed to be in Montgomery form in all methods
// Code generated by goff (v0.2.0) DO NOT EDIT
// Package ff (generated by goff) contains field arithmetics operations
// Package ff contains field arithmetic operations
package ff
// /!\ WARNING /!\
// this code has not been audited and is provided as-is. In particular,
// there is no security guarantees such as constant time implementation
// or side-channel attack resistance
// /!\ WARNING /!\
import (
"crypto/rand"
"encoding/binary"
"io"
"math/big"
"math/bits"
"strconv"
"sync"
"unsafe"
)
// Element represents a field element stored on 4 words (uint64)
// Element are assumed to be in Montgomery form in all methods
// field modulus q =
//
// 21888242871839275222246405745257275088548364400416034343698204186575808495617
type Element [4]uint64
// ElementLimbs number of 64 bits words needed to represent Element
@ -311,6 +315,7 @@ func (z *Element) SetRandom() *Element {
z[3] %= 3486998266802970665
// if z > q --> z -= q
// note: this is NOT constant time
if !(z[3] < 3486998266802970665 || (z[3] == 3486998266802970665 && (z[2] < 13281191951274694749 || (z[2] == 13281191951274694749 && (z[1] < 2896914383306846353 || (z[1] == 2896914383306846353 && (z[0] < 4891460686036598785))))))) {
var b uint64
z[0], b = bits.Sub64(z[0], 4891460686036598785, 0)
@ -322,6 +327,38 @@ func (z *Element) SetRandom() *Element {
return z
}
// One returns 1 (in montgommery form)
func One() Element {
var one Element
one.SetOne()
return one
}
// FromInterface converts i1 from uint64, int, string, or Element, big.Int into Element
// panic if provided type is not supported
func FromInterface(i1 interface{}) Element {
var val Element
switch c1 := i1.(type) {
case uint64:
val.SetUint64(c1)
case int:
val.SetString(strconv.Itoa(c1))
case string:
val.SetString(c1)
case big.Int:
val.SetBigInt(&c1)
case Element:
val = c1
case *Element:
val.Set(c1)
default:
panic("invalid type")
}
return val
}
// Add z = x + y mod q
func (z *Element) Add(x, y *Element) *Element {
var carry uint64
@ -332,6 +369,7 @@ func (z *Element) Add(x, y *Element) *Element {
z[3], _ = bits.Add64(x[3], y[3], carry)
// if z > q --> z -= q
// note: this is NOT constant time
if !(z[3] < 3486998266802970665 || (z[3] == 3486998266802970665 && (z[2] < 13281191951274694749 || (z[2] == 13281191951274694749 && (z[1] < 2896914383306846353 || (z[1] == 2896914383306846353 && (z[0] < 4891460686036598785))))))) {
var b uint64
z[0], b = bits.Sub64(z[0], 4891460686036598785, 0)
@ -352,6 +390,7 @@ func (z *Element) AddAssign(x *Element) *Element {
z[3], _ = bits.Add64(z[3], x[3], carry)
// if z > q --> z -= q
// note: this is NOT constant time
if !(z[3] < 3486998266802970665 || (z[3] == 3486998266802970665 && (z[2] < 13281191951274694749 || (z[2] == 13281191951274694749 && (z[1] < 2896914383306846353 || (z[1] == 2896914383306846353 && (z[0] < 4891460686036598785))))))) {
var b uint64
z[0], b = bits.Sub64(z[0], 4891460686036598785, 0)
@ -372,6 +411,7 @@ func (z *Element) Double(x *Element) *Element {
z[3], _ = bits.Add64(x[3], x[3], carry)
// if z > q --> z -= q
// note: this is NOT constant time
if !(z[3] < 3486998266802970665 || (z[3] == 3486998266802970665 && (z[2] < 13281191951274694749 || (z[2] == 13281191951274694749 && (z[1] < 2896914383306846353 || (z[1] == 2896914383306846353 && (z[0] < 4891460686036598785))))))) {
var b uint64
z[0], b = bits.Sub64(z[0], 4891460686036598785, 0)
@ -416,18 +456,31 @@ func (z *Element) SubAssign(x *Element) *Element {
return z
}
// Exp z = x^e mod q
func (z *Element) Exp(x Element, e uint64) *Element {
if e == 0 {
// Exp z = x^exponent mod q
// (not optimized)
// exponent (non-montgomery form) is ordered from least significant word to most significant word
func (z *Element) Exp(x Element, exponent ...uint64) *Element {
r := 0
msb := 0
for i := len(exponent) - 1; i >= 0; i-- {
if exponent[i] == 0 {
r++
} else {
msb = (i * 64) + bits.Len64(exponent[i])
break
}
}
exponent = exponent[:len(exponent)-r]
if len(exponent) == 0 {
return z.SetOne()
}
z.Set(&x)
l := bits.Len64(e) - 2
l := msb - 2
for i := l; i >= 0; i-- {
z.Square(z)
if e&(1<<uint(i)) != 0 {
if exponent[i/64]&(1<<uint(i%64)) != 0 {
z.MulAssign(&x)
}
}
@ -478,6 +531,7 @@ func (z *Element) FromMont() *Element {
}
// if z > q --> z -= q
// note: this is NOT constant time
if !(z[3] < 3486998266802970665 || (z[3] == 3486998266802970665 && (z[2] < 13281191951274694749 || (z[2] == 13281191951274694749 && (z[1] < 2896914383306846353 || (z[1] == 2896914383306846353 && (z[0] < 4891460686036598785))))))) {
var b uint64
z[0], b = bits.Sub64(z[0], 4891460686036598785, 0)
@ -549,6 +603,19 @@ func (z *Element) SetBigInt(v *big.Int) *Element {
zero := big.NewInt(0)
q := elementModulusBigInt()
// fast path
c := v.Cmp(q)
if c == 0 {
return z
} else if c != 1 && v.Cmp(zero) != -1 {
// v should
vBits := v.Bits()
for i := 0; i < len(vBits); i++ {
z[i] = uint64(vBits[i])
}
return z.ToMont()
}
// copy input
vv := new(big.Int).Set(v)
@ -591,202 +658,97 @@ func (z *Element) SetString(s string) *Element {
return z.SetBigInt(x)
}
// Mul z = x * y mod q
func (z *Element) Mul(x, y *Element) *Element {
// Legendre returns the Legendre symbol of z (either +1, -1, or 0.)
func (z *Element) Legendre() int {
var l Element
// z^((q-1)/2)
l.Exp(*z,
11669102379873075200,
10671829228508198984,
15863968012492123182,
1743499133401485332,
)
var t [4]uint64
var c [3]uint64
{
// round 0
v := x[0]
c[1], c[0] = bits.Mul64(v, y[0])
m := c[0] * 14042775128853446655
c[2] = madd0(m, 4891460686036598785, c[0])
c[1], c[0] = madd1(v, y[1], c[1])
c[2], t[0] = madd2(m, 2896914383306846353, c[2], c[0])
c[1], c[0] = madd1(v, y[2], c[1])
c[2], t[1] = madd2(m, 13281191951274694749, c[2], c[0])
c[1], c[0] = madd1(v, y[3], c[1])
t[3], t[2] = madd3(m, 3486998266802970665, c[0], c[2], c[1])
}
{
// round 1
v := x[1]
c[1], c[0] = madd1(v, y[0], t[0])
m := c[0] * 14042775128853446655
c[2] = madd0(m, 4891460686036598785, c[0])
c[1], c[0] = madd2(v, y[1], c[1], t[1])
c[2], t[0] = madd2(m, 2896914383306846353, c[2], c[0])
c[1], c[0] = madd2(v, y[2], c[1], t[2])
c[2], t[1] = madd2(m, 13281191951274694749, c[2], c[0])
c[1], c[0] = madd2(v, y[3], c[1], t[3])
t[3], t[2] = madd3(m, 3486998266802970665, c[0], c[2], c[1])
}
{
// round 2
v := x[2]
c[1], c[0] = madd1(v, y[0], t[0])
m := c[0] * 14042775128853446655
c[2] = madd0(m, 4891460686036598785, c[0])
c[1], c[0] = madd2(v, y[1], c[1], t[1])
c[2], t[0] = madd2(m, 2896914383306846353, c[2], c[0])
c[1], c[0] = madd2(v, y[2], c[1], t[2])
c[2], t[1] = madd2(m, 13281191951274694749, c[2], c[0])
c[1], c[0] = madd2(v, y[3], c[1], t[3])
t[3], t[2] = madd3(m, 3486998266802970665, c[0], c[2], c[1])
}
{
// round 3
v := x[3]
c[1], c[0] = madd1(v, y[0], t[0])
m := c[0] * 14042775128853446655
c[2] = madd0(m, 4891460686036598785, c[0])
c[1], c[0] = madd2(v, y[1], c[1], t[1])
c[2], z[0] = madd2(m, 2896914383306846353, c[2], c[0])
c[1], c[0] = madd2(v, y[2], c[1], t[2])
c[2], z[1] = madd2(m, 13281191951274694749, c[2], c[0])
c[1], c[0] = madd2(v, y[3], c[1], t[3])
z[3], z[2] = madd3(m, 3486998266802970665, c[0], c[2], c[1])
if l.IsZero() {
return 0
}
// if z > q --> z -= q
if !(z[3] < 3486998266802970665 || (z[3] == 3486998266802970665 && (z[2] < 13281191951274694749 || (z[2] == 13281191951274694749 && (z[1] < 2896914383306846353 || (z[1] == 2896914383306846353 && (z[0] < 4891460686036598785))))))) {
var b uint64
z[0], b = bits.Sub64(z[0], 4891460686036598785, 0)
z[1], b = bits.Sub64(z[1], 2896914383306846353, b)
z[2], b = bits.Sub64(z[2], 13281191951274694749, b)
z[3], _ = bits.Sub64(z[3], 3486998266802970665, b)
// if l == 1
if (l[3] == 1011752739694698287) && (l[2] == 7381016538464732718) && (l[1] == 3962172157175319849) && (l[0] == 12436184717236109307) {
return 1
}
return z
return -1
}
// MulAssign z = z * x mod q
func (z *Element) MulAssign(x *Element) *Element {
var t [4]uint64
var c [3]uint64
{
// round 0
v := z[0]
c[1], c[0] = bits.Mul64(v, x[0])
m := c[0] * 14042775128853446655
c[2] = madd0(m, 4891460686036598785, c[0])
c[1], c[0] = madd1(v, x[1], c[1])
c[2], t[0] = madd2(m, 2896914383306846353, c[2], c[0])
c[1], c[0] = madd1(v, x[2], c[1])
c[2], t[1] = madd2(m, 13281191951274694749, c[2], c[0])
c[1], c[0] = madd1(v, x[3], c[1])
t[3], t[2] = madd3(m, 3486998266802970665, c[0], c[2], c[1])
}
{
// round 1
v := z[1]
c[1], c[0] = madd1(v, x[0], t[0])
m := c[0] * 14042775128853446655
c[2] = madd0(m, 4891460686036598785, c[0])
c[1], c[0] = madd2(v, x[1], c[1], t[1])
c[2], t[0] = madd2(m, 2896914383306846353, c[2], c[0])
c[1], c[0] = madd2(v, x[2], c[1], t[2])
c[2], t[1] = madd2(m, 13281191951274694749, c[2], c[0])
c[1], c[0] = madd2(v, x[3], c[1], t[3])
t[3], t[2] = madd3(m, 3486998266802970665, c[0], c[2], c[1])
}
{
// round 2
v := z[2]
c[1], c[0] = madd1(v, x[0], t[0])
m := c[0] * 14042775128853446655
c[2] = madd0(m, 4891460686036598785, c[0])
c[1], c[0] = madd2(v, x[1], c[1], t[1])
c[2], t[0] = madd2(m, 2896914383306846353, c[2], c[0])
c[1], c[0] = madd2(v, x[2], c[1], t[2])
c[2], t[1] = madd2(m, 13281191951274694749, c[2], c[0])
c[1], c[0] = madd2(v, x[3], c[1], t[3])
t[3], t[2] = madd3(m, 3486998266802970665, c[0], c[2], c[1])
// Sqrt z = √x mod q
// if the square root doesn't exist (x is not a square mod q)
// Sqrt leaves z unchanged and returns nil
func (z *Element) Sqrt(x *Element) *Element {
// q ≡ 1 (mod 4)
// see modSqrtTonelliShanks in math/big/int.go
// using https://www.maa.org/sites/default/files/pdf/upload_library/22/Polya/07468342.di020786.02p0470a.pdf
var y, b, t, w Element
// w = x^((s-1)/2))
w.Exp(*x,
14829091926808964255,
867720185306366531,
688207751544974772,
6495040407,
)
// y = x^((s+1)/2)) = w * x
y.Mul(x, &w)
// b = x^s = w * w * x = y * x
b.Mul(&w, &y)
// g = nonResidue ^ s
var g = Element{
7164790868263648668,
11685701338293206998,
6216421865291908056,
1756667274303109607,
}
r := uint64(28)
// compute legendre symbol
// t = x^((q-1)/2) = r-1 squaring of x^s
t = b
for i := uint64(0); i < r-1; i++ {
t.Square(&t)
}
if t.IsZero() {
return z.SetZero()
}
{
// round 3
v := z[3]
c[1], c[0] = madd1(v, x[0], t[0])
m := c[0] * 14042775128853446655
c[2] = madd0(m, 4891460686036598785, c[0])
c[1], c[0] = madd2(v, x[1], c[1], t[1])
c[2], z[0] = madd2(m, 2896914383306846353, c[2], c[0])
c[1], c[0] = madd2(v, x[2], c[1], t[2])
c[2], z[1] = madd2(m, 13281191951274694749, c[2], c[0])
c[1], c[0] = madd2(v, x[3], c[1], t[3])
z[3], z[2] = madd3(m, 3486998266802970665, c[0], c[2], c[1])
if !((t[3] == 1011752739694698287) && (t[2] == 7381016538464732718) && (t[1] == 3962172157175319849) && (t[0] == 12436184717236109307)) {
// t != 1, we don't have a square root
return nil
}
for {
var m uint64
t = b
// if z > q --> z -= q
if !(z[3] < 3486998266802970665 || (z[3] == 3486998266802970665 && (z[2] < 13281191951274694749 || (z[2] == 13281191951274694749 && (z[1] < 2896914383306846353 || (z[1] == 2896914383306846353 && (z[0] < 4891460686036598785))))))) {
var b uint64
z[0], b = bits.Sub64(z[0], 4891460686036598785, 0)
z[1], b = bits.Sub64(z[1], 2896914383306846353, b)
z[2], b = bits.Sub64(z[2], 13281191951274694749, b)
z[3], _ = bits.Sub64(z[3], 3486998266802970665, b)
}
return z
}
// Square z = x * x mod q
func (z *Element) Square(x *Element) *Element {
var p [4]uint64
// for t != 1
for !((t[3] == 1011752739694698287) && (t[2] == 7381016538464732718) && (t[1] == 3962172157175319849) && (t[0] == 12436184717236109307)) {
t.Square(&t)
m++
}
var u, v uint64
{
// round 0
u, p[0] = bits.Mul64(x[0], x[0])
m := p[0] * 14042775128853446655
C := madd0(m, 4891460686036598785, p[0])
var t uint64
t, u, v = madd1sb(x[0], x[1], u)
C, p[0] = madd2(m, 2896914383306846353, v, C)
t, u, v = madd1s(x[0], x[2], t, u)
C, p[1] = madd2(m, 13281191951274694749, v, C)
_, u, v = madd1s(x[0], x[3], t, u)
p[3], p[2] = madd3(m, 3486998266802970665, v, C, u)
}
{
// round 1
m := p[0] * 14042775128853446655
C := madd0(m, 4891460686036598785, p[0])
u, v = madd1(x[1], x[1], p[1])
C, p[0] = madd2(m, 2896914383306846353, v, C)
var t uint64
t, u, v = madd2sb(x[1], x[2], p[2], u)
C, p[1] = madd2(m, 13281191951274694749, v, C)
_, u, v = madd2s(x[1], x[3], p[3], t, u)
p[3], p[2] = madd3(m, 3486998266802970665, v, C, u)
}
{
// round 2
m := p[0] * 14042775128853446655
C := madd0(m, 4891460686036598785, p[0])
C, p[0] = madd2(m, 2896914383306846353, p[1], C)
u, v = madd1(x[2], x[2], p[2])
C, p[1] = madd2(m, 13281191951274694749, v, C)
_, u, v = madd2sb(x[2], x[3], p[3], u)
p[3], p[2] = madd3(m, 3486998266802970665, v, C, u)
}
{
// round 3
m := p[0] * 14042775128853446655
C := madd0(m, 4891460686036598785, p[0])
C, z[0] = madd2(m, 2896914383306846353, p[1], C)
C, z[1] = madd2(m, 13281191951274694749, p[2], C)
u, v = madd1(x[3], x[3], p[3])
z[3], z[2] = madd3(m, 3486998266802970665, v, C, u)
}
if m == 0 {
return z.Set(&y)
}
// t = g^(2^(r-m-1)) mod q
ge := int(r - m - 1)
t = g
for ge > 0 {
t.Square(&t)
ge--
}
// if z > q --> z -= q
if !(z[3] < 3486998266802970665 || (z[3] == 3486998266802970665 && (z[2] < 13281191951274694749 || (z[2] == 13281191951274694749 && (z[1] < 2896914383306846353 || (z[1] == 2896914383306846353 && (z[0] < 4891460686036598785))))))) {
var b uint64
z[0], b = bits.Sub64(z[0], 4891460686036598785, 0)
z[1], b = bits.Sub64(z[1], 2896914383306846353, b)
z[2], b = bits.Sub64(z[2], 13281191951274694749, b)
z[3], _ = bits.Sub64(z[3], 3486998266802970665, b)
g.Square(&t)
y.MulAssign(&t)
b.MulAssign(&g)
r = m
}
return z
}

+ 170
- 0
ff/element_mul.go

@ -0,0 +1,170 @@
// +build !amd64
// Copyright 2020 ConsenSys AG
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// Code generated by goff (v0.2.0) DO NOT EDIT
// Package ff contains field arithmetic operations
package ff
// /!\ WARNING /!\
// this code has not been audited and is provided as-is. In particular,
// there is no security guarantees such as constant time implementation
// or side-channel attack resistance
// /!\ WARNING /!\
import "math/bits"
// Mul z = x * y mod q
// see https://hackmd.io/@zkteam/modular_multiplication
func (z *Element) Mul(x, y *Element) *Element {
var t [4]uint64
var c [3]uint64
{
// round 0
v := x[0]
c[1], c[0] = bits.Mul64(v, y[0])
m := c[0] * 14042775128853446655
c[2] = madd0(m, 4891460686036598785, c[0])
c[1], c[0] = madd1(v, y[1], c[1])
c[2], t[0] = madd2(m, 2896914383306846353, c[2], c[0])
c[1], c[0] = madd1(v, y[2], c[1])
c[2], t[1] = madd2(m, 13281191951274694749, c[2], c[0])
c[1], c[0] = madd1(v, y[3], c[1])
t[3], t[2] = madd3(m, 3486998266802970665, c[0], c[2], c[1])
}
{
// round 1
v := x[1]
c[1], c[0] = madd1(v, y[0], t[0])
m := c[0] * 14042775128853446655
c[2] = madd0(m, 4891460686036598785, c[0])
c[1], c[0] = madd2(v, y[1], c[1], t[1])
c[2], t[0] = madd2(m, 2896914383306846353, c[2], c[0])
c[1], c[0] = madd2(v, y[2], c[1], t[2])
c[2], t[1] = madd2(m, 13281191951274694749, c[2], c[0])
c[1], c[0] = madd2(v, y[3], c[1], t[3])
t[3], t[2] = madd3(m, 3486998266802970665, c[0], c[2], c[1])
}
{
// round 2
v := x[2]
c[1], c[0] = madd1(v, y[0], t[0])
m := c[0] * 14042775128853446655
c[2] = madd0(m, 4891460686036598785, c[0])
c[1], c[0] = madd2(v, y[1], c[1], t[1])
c[2], t[0] = madd2(m, 2896914383306846353, c[2], c[0])
c[1], c[0] = madd2(v, y[2], c[1], t[2])
c[2], t[1] = madd2(m, 13281191951274694749, c[2], c[0])
c[1], c[0] = madd2(v, y[3], c[1], t[3])
t[3], t[2] = madd3(m, 3486998266802970665, c[0], c[2], c[1])
}
{
// round 3
v := x[3]
c[1], c[0] = madd1(v, y[0], t[0])
m := c[0] * 14042775128853446655
c[2] = madd0(m, 4891460686036598785, c[0])
c[1], c[0] = madd2(v, y[1], c[1], t[1])
c[2], z[0] = madd2(m, 2896914383306846353, c[2], c[0])
c[1], c[0] = madd2(v, y[2], c[1], t[2])
c[2], z[1] = madd2(m, 13281191951274694749, c[2], c[0])
c[1], c[0] = madd2(v, y[3], c[1], t[3])
z[3], z[2] = madd3(m, 3486998266802970665, c[0], c[2], c[1])
}
// if z > q --> z -= q
// note: this is NOT constant time
if !(z[3] < 3486998266802970665 || (z[3] == 3486998266802970665 && (z[2] < 13281191951274694749 || (z[2] == 13281191951274694749 && (z[1] < 2896914383306846353 || (z[1] == 2896914383306846353 && (z[0] < 4891460686036598785))))))) {
var b uint64
z[0], b = bits.Sub64(z[0], 4891460686036598785, 0)
z[1], b = bits.Sub64(z[1], 2896914383306846353, b)
z[2], b = bits.Sub64(z[2], 13281191951274694749, b)
z[3], _ = bits.Sub64(z[3], 3486998266802970665, b)
}
return z
}
// MulAssign z = z * x mod q
// see https://hackmd.io/@zkteam/modular_multiplication
func (z *Element) MulAssign(x *Element) *Element {
var t [4]uint64
var c [3]uint64
{
// round 0
v := z[0]
c[1], c[0] = bits.Mul64(v, x[0])
m := c[0] * 14042775128853446655
c[2] = madd0(m, 4891460686036598785, c[0])
c[1], c[0] = madd1(v, x[1], c[1])
c[2], t[0] = madd2(m, 2896914383306846353, c[2], c[0])
c[1], c[0] = madd1(v, x[2], c[1])
c[2], t[1] = madd2(m, 13281191951274694749, c[2], c[0])
c[1], c[0] = madd1(v, x[3], c[1])
t[3], t[2] = madd3(m, 3486998266802970665, c[0], c[2], c[1])
}
{
// round 1
v := z[1]
c[1], c[0] = madd1(v, x[0], t[0])
m := c[0] * 14042775128853446655
c[2] = madd0(m, 4891460686036598785, c[0])
c[1], c[0] = madd2(v, x[1], c[1], t[1])
c[2], t[0] = madd2(m, 2896914383306846353, c[2], c[0])
c[1], c[0] = madd2(v, x[2], c[1], t[2])
c[2], t[1] = madd2(m, 13281191951274694749, c[2], c[0])
c[1], c[0] = madd2(v, x[3], c[1], t[3])
t[3], t[2] = madd3(m, 3486998266802970665, c[0], c[2], c[1])
}
{
// round 2
v := z[2]
c[1], c[0] = madd1(v, x[0], t[0])
m := c[0] * 14042775128853446655
c[2] = madd0(m, 4891460686036598785, c[0])
c[1], c[0] = madd2(v, x[1], c[1], t[1])
c[2], t[0] = madd2(m, 2896914383306846353, c[2], c[0])
c[1], c[0] = madd2(v, x[2], c[1], t[2])
c[2], t[1] = madd2(m, 13281191951274694749, c[2], c[0])
c[1], c[0] = madd2(v, x[3], c[1], t[3])
t[3], t[2] = madd3(m, 3486998266802970665, c[0], c[2], c[1])
}
{
// round 3
v := z[3]
c[1], c[0] = madd1(v, x[0], t[0])
m := c[0] * 14042775128853446655
c[2] = madd0(m, 4891460686036598785, c[0])
c[1], c[0] = madd2(v, x[1], c[1], t[1])
c[2], z[0] = madd2(m, 2896914383306846353, c[2], c[0])
c[1], c[0] = madd2(v, x[2], c[1], t[2])
c[2], z[1] = madd2(m, 13281191951274694749, c[2], c[0])
c[1], c[0] = madd2(v, x[3], c[1], t[3])
z[3], z[2] = madd3(m, 3486998266802970665, c[0], c[2], c[1])
}
// if z > q --> z -= q
// note: this is NOT constant time
if !(z[3] < 3486998266802970665 || (z[3] == 3486998266802970665 && (z[2] < 13281191951274694749 || (z[2] == 13281191951274694749 && (z[1] < 2896914383306846353 || (z[1] == 2896914383306846353 && (z[0] < 4891460686036598785))))))) {
var b uint64
z[0], b = bits.Sub64(z[0], 4891460686036598785, 0)
z[1], b = bits.Sub64(z[1], 2896914383306846353, b)
z[2], b = bits.Sub64(z[2], 13281191951274694749, b)
z[3], _ = bits.Sub64(z[3], 3486998266802970665, b)
}
return z
}

+ 39
- 0
ff/element_mul_amd64.go

@ -0,0 +1,39 @@
// Copyright 2020 ConsenSys AG
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// Code generated by goff (v0.2.0) DO NOT EDIT
// Package ff contains field arithmetic operations
package ff
// MulAssignElement z = z * x mod q (constant time)
// calling this instead of z.MulAssign(x) is prefered for performance critical path
//go:noescape
func MulAssignElement(res, y *Element)
// Mul z = x * y mod q (constant time)
// see https://hackmd.io/@zkteam/modular_multiplication
func (z *Element) Mul(x, y *Element) *Element {
res := *x
MulAssignElement(&res, y)
z.Set(&res)
return z
}
// MulAssign z = z * x mod q (constant time)
// see https://hackmd.io/@zkteam/modular_multiplication
func (z *Element) MulAssign(x *Element) *Element {
MulAssignElement(z, x)
return z
}

+ 695
- 0
ff/element_mul_amd64.s

@ -0,0 +1,695 @@
// Code generated by goff (v0.2.0) DO NOT EDIT
#include "textflag.h"
// func MulAssignElement(res,y *Element)
// montgomery multiplication of res by y
// stores the result in res
TEXT ·MulAssignElement(SB), NOSPLIT, $0-16
// dereference our parameters
MOVQ res+0(FP), DI
MOVQ y+8(FP), R8
// check if we support adx and mulx
CMPB ·supportAdx(SB), $1
JNE no_adx
// the algorithm is described here
// https://hackmd.io/@zkteam/modular_multiplication
// however, to benefit from the ADCX and ADOX carry chains
// we split the inner loops in 2:
// for i=0 to N-1
// for j=0 to N-1
// (A,t[j]) := t[j] + a[j]*b[i] + A
// m := t[0]*q'[0] mod W
// C,_ := t[0] + m*q[0]
// for j=1 to N-1
// (C,t[j-1]) := t[j] + m*q[j] + C
// t[N-1] = C + A
// ---------------------------------------------------------------------------------------------
// outter loop 0
// clear up the carry flags
XORQ R9 , R9
// R12 = y[0]
MOVQ 0(R8), R12
// for j=0 to N-1
// (A,t[j]) := t[j] + x[j]*y[i] + A
// DX = res[0]
MOVQ 0(DI), DX
MULXQ R12, CX , R9
// DX = res[1]
MOVQ 8(DI), DX
MOVQ R9, BX
MULXQ R12, AX, R9
ADOXQ AX, BX
// DX = res[2]
MOVQ 16(DI), DX
MOVQ R9, BP
MULXQ R12, AX, R9
ADOXQ AX, BP
// DX = res[3]
MOVQ 24(DI), DX
MOVQ R9, SI
MULXQ R12, AX, R9
ADOXQ AX, SI
// add the last carries to R9
MOVQ $0, DX
ADCXQ DX, R9
ADOXQ DX, R9
// m := t[0]*q'[0] mod W
MOVQ $0xc2e1f593efffffff, DX
MULXQ CX,R11, DX
// clear the carry flags
XORQ DX, DX
// C,_ := t[0] + m*q[0]
MOVQ $0x43e1f593f0000001, DX
MULXQ R11, AX, R10
ADCXQ CX ,AX
// for j=1 to N-1
// (C,t[j-1]) := t[j] + m*q[j] + C
MOVQ $0x2833e84879b97091, DX
MULXQ R11, AX, DX
ADCXQ BX, R10
ADOXQ AX, R10
MOVQ R10, CX
MOVQ DX, R10
MOVQ $0xb85045b68181585d, DX
MULXQ R11, AX, DX
ADCXQ BP, R10
ADOXQ AX, R10
MOVQ R10, BX
MOVQ DX, R10
MOVQ $0x30644e72e131a029, DX
MULXQ R11, AX, DX
ADCXQ SI, R10
ADOXQ AX, R10
MOVQ R10, BP
MOVQ $0, AX
ADCXQ AX, DX
ADOXQ DX, R9
MOVQ R9, SI
// ---------------------------------------------------------------------------------------------
// outter loop 1
// clear up the carry flags
XORQ R9 , R9
// R12 = y[1]
MOVQ 8(R8), R12
// for j=0 to N-1
// (A,t[j]) := t[j] + x[j]*y[i] + A
// DX = res[0]
MOVQ 0(DI), DX
MULXQ R12, AX, R9
ADOXQ AX, CX
// DX = res[1]
MOVQ 8(DI), DX
ADCXQ R9, BX
MULXQ R12, AX, R9
ADOXQ AX, BX
// DX = res[2]
MOVQ 16(DI), DX
ADCXQ R9, BP
MULXQ R12, AX, R9
ADOXQ AX, BP
// DX = res[3]
MOVQ 24(DI), DX
ADCXQ R9, SI
MULXQ R12, AX, R9
ADOXQ AX, SI
// add the last carries to R9
MOVQ $0, DX
ADCXQ DX, R9
ADOXQ DX, R9
// m := t[0]*q'[0] mod W
MOVQ $0xc2e1f593efffffff, DX
MULXQ CX,R11, DX
// clear the carry flags
XORQ DX, DX
// C,_ := t[0] + m*q[0]
MOVQ $0x43e1f593f0000001, DX
MULXQ R11, AX, R10
ADCXQ CX ,AX
// for j=1 to N-1
// (C,t[j-1]) := t[j] + m*q[j] + C
MOVQ $0x2833e84879b97091, DX
MULXQ R11, AX, DX
ADCXQ BX, R10
ADOXQ AX, R10
MOVQ R10, CX
MOVQ DX, R10
MOVQ $0xb85045b68181585d, DX
MULXQ R11, AX, DX
ADCXQ BP, R10
ADOXQ AX, R10
MOVQ R10, BX
MOVQ DX, R10
MOVQ $0x30644e72e131a029, DX
MULXQ R11, AX, DX
ADCXQ SI, R10
ADOXQ AX, R10
MOVQ R10, BP
MOVQ $0, AX
ADCXQ AX, DX
ADOXQ DX, R9
MOVQ R9, SI
// ---------------------------------------------------------------------------------------------
// outter loop 2
// clear up the carry flags
XORQ R9 , R9
// R12 = y[2]
MOVQ 16(R8), R12
// for j=0 to N-1
// (A,t[j]) := t[j] + x[j]*y[i] + A
// DX = res[0]
MOVQ 0(DI), DX
MULXQ R12, AX, R9
ADOXQ AX, CX
// DX = res[1]
MOVQ 8(DI), DX
ADCXQ R9, BX
MULXQ R12, AX, R9
ADOXQ AX, BX
// DX = res[2]
MOVQ 16(DI), DX
ADCXQ R9, BP
MULXQ R12, AX, R9
ADOXQ AX, BP
// DX = res[3]
MOVQ 24(DI), DX
ADCXQ R9, SI
MULXQ R12, AX, R9
ADOXQ AX, SI
// add the last carries to R9
MOVQ $0, DX
ADCXQ DX, R9
ADOXQ DX, R9
// m := t[0]*q'[0] mod W
MOVQ $0xc2e1f593efffffff, DX
MULXQ CX,R11, DX
// clear the carry flags
XORQ DX, DX
// C,_ := t[0] + m*q[0]
MOVQ $0x43e1f593f0000001, DX
MULXQ R11, AX, R10
ADCXQ CX ,AX
// for j=1 to N-1
// (C,t[j-1]) := t[j] + m*q[j] + C
MOVQ $0x2833e84879b97091, DX
MULXQ R11, AX, DX
ADCXQ BX, R10
ADOXQ AX, R10
MOVQ R10, CX
MOVQ DX, R10
MOVQ $0xb85045b68181585d, DX
MULXQ R11, AX, DX
ADCXQ BP, R10
ADOXQ AX, R10
MOVQ R10, BX
MOVQ DX, R10
MOVQ $0x30644e72e131a029, DX
MULXQ R11, AX, DX
ADCXQ SI, R10
ADOXQ AX, R10
MOVQ R10, BP
MOVQ $0, AX
ADCXQ AX, DX
ADOXQ DX, R9
MOVQ R9, SI
// ---------------------------------------------------------------------------------------------
// outter loop 3
// clear up the carry flags
XORQ R9 , R9
// R12 = y[3]
MOVQ 24(R8), R12
// for j=0 to N-1
// (A,t[j]) := t[j] + x[j]*y[i] + A
// DX = res[0]
MOVQ 0(DI), DX
MULXQ R12, AX, R9
ADOXQ AX, CX
// DX = res[1]
MOVQ 8(DI), DX
ADCXQ R9, BX
MULXQ R12, AX, R9
ADOXQ AX, BX
// DX = res[2]
MOVQ 16(DI), DX
ADCXQ R9, BP
MULXQ R12, AX, R9
ADOXQ AX, BP
// DX = res[3]
MOVQ 24(DI), DX
ADCXQ R9, SI
MULXQ R12, AX, R9
ADOXQ AX, SI
// add the last carries to R9
MOVQ $0, DX
ADCXQ DX, R9
ADOXQ DX, R9
// m := t[0]*q'[0] mod W
MOVQ $0xc2e1f593efffffff, DX
MULXQ CX,R11, DX
// clear the carry flags
XORQ DX, DX
// C,_ := t[0] + m*q[0]
MOVQ $0x43e1f593f0000001, DX
MULXQ R11, AX, R10
ADCXQ CX ,AX
// for j=1 to N-1
// (C,t[j-1]) := t[j] + m*q[j] + C
MOVQ $0x2833e84879b97091, DX
MULXQ R11, AX, DX
ADCXQ BX, R10
ADOXQ AX, R10
MOVQ R10, CX
MOVQ DX, R10
MOVQ $0xb85045b68181585d, DX
MULXQ R11, AX, DX
ADCXQ BP, R10
ADOXQ AX, R10
MOVQ R10, BX
MOVQ DX, R10
MOVQ $0x30644e72e131a029, DX
MULXQ R11, AX, DX
ADCXQ SI, R10
ADOXQ AX, R10
MOVQ R10, BP
MOVQ $0, AX
ADCXQ AX, DX
ADOXQ DX, R9
MOVQ R9, SI
reduce:
// reduce, constant time version
// first we copy registers storing t in a separate set of registers
// as SUBQ modifies the 2nd operand
MOVQ CX, DX
MOVQ BX, R8
MOVQ BP, R9
MOVQ SI, R10
MOVQ $0x43e1f593f0000001, R11
SUBQ R11, DX
MOVQ $0x2833e84879b97091, R11
SBBQ R11, R8
MOVQ $0xb85045b68181585d, R11
SBBQ R11, R9
MOVQ $0x30644e72e131a029, R11
SBBQ R11, R10
JCS t_is_smaller // no borrow, we return t
// borrow is set, we return u
MOVQ DX, (DI)
MOVQ R8, 8(DI)
MOVQ R9, 16(DI)
MOVQ R10, 24(DI)
RET
t_is_smaller:
MOVQ CX, 0(DI)
MOVQ BX, 8(DI)
MOVQ BP, 16(DI)
MOVQ SI, 24(DI)
RET
no_adx:
// ---------------------------------------------------------------------------------------------
// outter loop 0
// (A,t[0]) := t[0] + x[0]*y[0]
MOVQ (DI), AX // x[0]
MOVQ 0(R8), R12
MULQ R12 // x[0] * y[0]
MOVQ DX, R9
MOVQ AX, CX
// m := t[0]*q'[0] mod W
MOVQ $0xc2e1f593efffffff, R11
IMULQ CX , R11
// C,_ := t[0] + m*q[0]
MOVQ $0x43e1f593f0000001, AX
MULQ R11
ADDQ CX ,AX
ADCQ $0, DX
MOVQ DX, R10
// for j=1 to N-1
// (A,t[j]) := t[j] + x[j]*y[i] + A
// (C,t[j-1]) := t[j] + m*q[j] + C
MOVQ 8(DI), AX
MULQ R12 // x[1] * y[0]
MOVQ R9, BX
ADDQ AX, BX
ADCQ $0, DX
MOVQ DX, R9
MOVQ $0x2833e84879b97091, AX
MULQ R11
ADDQ BX, R10
ADCQ $0, DX
ADDQ AX, R10
ADCQ $0, DX
MOVQ R10, CX
MOVQ DX, R10
MOVQ 16(DI), AX
MULQ R12 // x[2] * y[0]
MOVQ R9, BP
ADDQ AX, BP
ADCQ $0, DX
MOVQ DX, R9
MOVQ $0xb85045b68181585d, AX
MULQ R11
ADDQ BP, R10
ADCQ $0, DX
ADDQ AX, R10
ADCQ $0, DX
MOVQ R10, BX
MOVQ DX, R10
MOVQ 24(DI), AX
MULQ R12 // x[3] * y[0]
MOVQ R9, SI
ADDQ AX, SI
ADCQ $0, DX
MOVQ DX, R9
MOVQ $0x30644e72e131a029, AX
MULQ R11
ADDQ SI, R10
ADCQ $0, DX
ADDQ AX, R10
ADCQ $0, DX
MOVQ R10, BP
MOVQ DX, R10
ADDQ R10, R9
MOVQ R9, SI
// ---------------------------------------------------------------------------------------------
// outter loop 1
// (A,t[0]) := t[0] + x[0]*y[1]
MOVQ (DI), AX // x[0]
MOVQ 8(R8), R12
MULQ R12 // x[0] * y[1]
ADDQ AX, CX
ADCQ $0, DX
MOVQ DX, R9
// m := t[0]*q'[0] mod W
MOVQ $0xc2e1f593efffffff, R11
IMULQ CX , R11
// C,_ := t[0] + m*q[0]
MOVQ $0x43e1f593f0000001, AX
MULQ R11
ADDQ CX ,AX
ADCQ $0, DX
MOVQ DX, R10
// for j=1 to N-1
// (A,t[j]) := t[j] + x[j]*y[i] + A
// (C,t[j-1]) := t[j] + m*q[j] + C
MOVQ 8(DI), AX
MULQ R12 // x[1] * y[1]
ADDQ R9, BX
ADCQ $0, DX
ADDQ AX, BX
ADCQ $0, DX
MOVQ DX, R9
MOVQ $0x2833e84879b97091, AX
MULQ R11
ADDQ BX, R10
ADCQ $0, DX
ADDQ AX, R10
ADCQ $0, DX
MOVQ R10, CX
MOVQ DX, R10
MOVQ 16(DI), AX
MULQ R12 // x[2] * y[1]
ADDQ R9, BP
ADCQ $0, DX
ADDQ AX, BP
ADCQ $0, DX
MOVQ DX, R9
MOVQ $0xb85045b68181585d, AX
MULQ R11
ADDQ BP, R10
ADCQ $0, DX
ADDQ AX, R10
ADCQ $0, DX
MOVQ R10, BX
MOVQ DX, R10
MOVQ 24(DI), AX
MULQ R12 // x[3] * y[1]
ADDQ R9, SI
ADCQ $0, DX
ADDQ AX, SI
ADCQ $0, DX
MOVQ DX, R9
MOVQ $0x30644e72e131a029, AX
MULQ R11
ADDQ SI, R10
ADCQ $0, DX
ADDQ AX, R10
ADCQ $0, DX
MOVQ R10, BP
MOVQ DX, R10
ADDQ R10, R9
MOVQ R9, SI
// ---------------------------------------------------------------------------------------------
// outter loop 2
// (A,t[0]) := t[0] + x[0]*y[2]
MOVQ (DI), AX // x[0]
MOVQ 16(R8), R12
MULQ R12 // x[0] * y[2]
ADDQ AX, CX
ADCQ $0, DX
MOVQ DX, R9
// m := t[0]*q'[0] mod W
MOVQ $0xc2e1f593efffffff, R11
IMULQ CX , R11
// C,_ := t[0] + m*q[0]
MOVQ $0x43e1f593f0000001, AX
MULQ R11
ADDQ CX ,AX
ADCQ $0, DX
MOVQ DX, R10
// for j=1 to N-1
// (A,t[j]) := t[j] + x[j]*y[i] + A
// (C,t[j-1]) := t[j] + m*q[j] + C
MOVQ 8(DI), AX
MULQ R12 // x[1] * y[2]
ADDQ R9, BX
ADCQ $0, DX
ADDQ AX, BX
ADCQ $0, DX
MOVQ DX, R9
MOVQ $0x2833e84879b97091, AX
MULQ R11
ADDQ BX, R10
ADCQ $0, DX
ADDQ AX, R10
ADCQ $0, DX
MOVQ R10, CX
MOVQ DX, R10
MOVQ 16(DI), AX
MULQ R12 // x[2] * y[2]
ADDQ R9, BP
ADCQ $0, DX
ADDQ AX, BP
ADCQ $0, DX
MOVQ DX, R9
MOVQ $0xb85045b68181585d, AX
MULQ R11
ADDQ BP, R10
ADCQ $0, DX
ADDQ AX, R10
ADCQ $0, DX
MOVQ R10, BX
MOVQ DX, R10
MOVQ 24(DI), AX
MULQ R12 // x[3] * y[2]
ADDQ R9, SI
ADCQ $0, DX
ADDQ AX, SI
ADCQ $0, DX
MOVQ DX, R9
MOVQ $0x30644e72e131a029, AX
MULQ R11
ADDQ SI, R10
ADCQ $0, DX
ADDQ AX, R10
ADCQ $0, DX
MOVQ R10, BP
MOVQ DX, R10
ADDQ R10, R9
MOVQ R9, SI
// ---------------------------------------------------------------------------------------------
// outter loop 3
// (A,t[0]) := t[0] + x[0]*y[3]
MOVQ (DI), AX // x[0]
MOVQ 24(R8), R12
MULQ R12 // x[0] * y[3]
ADDQ AX, CX
ADCQ $0, DX
MOVQ DX, R9
// m := t[0]*q'[0] mod W
MOVQ $0xc2e1f593efffffff, R11
IMULQ CX , R11
// C,_ := t[0] + m*q[0]
MOVQ $0x43e1f593f0000001, AX
MULQ R11
ADDQ CX ,AX
ADCQ $0, DX
MOVQ DX, R10
// for j=1 to N-1
// (A,t[j]) := t[j] + x[j]*y[i] + A
// (C,t[j-1]) := t[j] + m*q[j] + C
MOVQ 8(DI), AX
MULQ R12 // x[1] * y[3]
ADDQ R9, BX
ADCQ $0, DX
ADDQ AX, BX
ADCQ $0, DX
MOVQ DX, R9
MOVQ $0x2833e84879b97091, AX
MULQ R11
ADDQ BX, R10
ADCQ $0, DX
ADDQ AX, R10
ADCQ $0, DX
MOVQ R10, CX
MOVQ DX, R10
MOVQ 16(DI), AX
MULQ R12 // x[2] * y[3]
ADDQ R9, BP
ADCQ $0, DX
ADDQ AX, BP
ADCQ $0, DX
MOVQ DX, R9
MOVQ $0xb85045b68181585d, AX
MULQ R11
ADDQ BP, R10
ADCQ $0, DX
ADDQ AX, R10
ADCQ $0, DX
MOVQ R10, BX
MOVQ DX, R10
MOVQ 24(DI), AX
MULQ R12 // x[3] * y[3]
ADDQ R9, SI
ADCQ $0, DX
ADDQ AX, SI
ADCQ $0, DX
MOVQ DX, R9
MOVQ $0x30644e72e131a029, AX
MULQ R11
ADDQ SI, R10
ADCQ $0, DX
ADDQ AX, R10
ADCQ $0, DX
MOVQ R10, BP
MOVQ DX, R10
ADDQ R10, R9
MOVQ R9, SI
JMP reduce

+ 93
- 0
ff/element_square.go

@ -0,0 +1,93 @@
// +build !amd64
// Copyright 2020 ConsenSys AG
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// Code generated by goff (v0.2.0) DO NOT EDIT
// Package ff contains field arithmetic operations
package ff
// /!\ WARNING /!\
// this code has not been audited and is provided as-is. In particular,
// there is no security guarantees such as constant time implementation
// or side-channel attack resistance
// /!\ WARNING /!\
import "math/bits"
// Square z = x * x mod q
// see https://hackmd.io/@zkteam/modular_multiplication
func (z *Element) Square(x *Element) *Element {
var p [4]uint64
var u, v uint64
{
// round 0
u, p[0] = bits.Mul64(x[0], x[0])
m := p[0] * 14042775128853446655
C := madd0(m, 4891460686036598785, p[0])
var t uint64
t, u, v = madd1sb(x[0], x[1], u)
C, p[0] = madd2(m, 2896914383306846353, v, C)
t, u, v = madd1s(x[0], x[2], t, u)
C, p[1] = madd2(m, 13281191951274694749, v, C)
_, u, v = madd1s(x[0], x[3], t, u)
p[3], p[2] = madd3(m, 3486998266802970665, v, C, u)
}
{
// round 1
m := p[0] * 14042775128853446655
C := madd0(m, 4891460686036598785, p[0])
u, v = madd1(x[1], x[1], p[1])
C, p[0] = madd2(m, 2896914383306846353, v, C)
var t uint64
t, u, v = madd2sb(x[1], x[2], p[2], u)
C, p[1] = madd2(m, 13281191951274694749, v, C)
_, u, v = madd2s(x[1], x[3], p[3], t, u)
p[3], p[2] = madd3(m, 3486998266802970665, v, C, u)
}
{
// round 2
m := p[0] * 14042775128853446655
C := madd0(m, 4891460686036598785, p[0])
C, p[0] = madd2(m, 2896914383306846353, p[1], C)
u, v = madd1(x[2], x[2], p[2])
C, p[1] = madd2(m, 13281191951274694749, v, C)
_, u, v = madd2sb(x[2], x[3], p[3], u)
p[3], p[2] = madd3(m, 3486998266802970665, v, C, u)
}
{
// round 3
m := p[0] * 14042775128853446655
C := madd0(m, 4891460686036598785, p[0])
C, z[0] = madd2(m, 2896914383306846353, p[1], C)
C, z[1] = madd2(m, 13281191951274694749, p[2], C)
u, v = madd1(x[3], x[3], p[3])
z[3], z[2] = madd3(m, 3486998266802970665, v, C, u)
}
// if z > q --> z -= q
// note: this is NOT constant time
if !(z[3] < 3486998266802970665 || (z[3] == 3486998266802970665 && (z[2] < 13281191951274694749 || (z[2] == 13281191951274694749 && (z[1] < 2896914383306846353 || (z[1] == 2896914383306846353 && (z[0] < 4891460686036598785))))))) {
var b uint64
z[0], b = bits.Sub64(z[0], 4891460686036598785, 0)
z[1], b = bits.Sub64(z[1], 2896914383306846353, b)
z[2], b = bits.Sub64(z[2], 13281191951274694749, b)
z[3], _ = bits.Sub64(z[3], 3486998266802970665, b)
}
return z
}

+ 34
- 0
ff/element_square_amd64.go

@ -0,0 +1,34 @@
// Copyright 2020 ConsenSys AG
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// Code generated by goff (v0.2.0) DO NOT EDIT
// Package ff contains field arithmetic operations
package ff
// SquareElement z = x * x mod q
// calling this instead of z.Square(x) is prefered for performance critical path
// go - noescape
// func SquareElement(res,x *Element)
// Square z = x * x mod q
// see https://hackmd.io/@zkteam/modular_multiplication
func (z *Element) Square(x *Element) *Element {
if z != x {
z.Set(x)
}
MulAssignElement(z, x)
// SquareElement(z, x)
return z
}

+ 245
- 5
ff/element_test.go

@ -1,9 +1,26 @@
// Code generated by goff DO NOT EDIT
// Copyright 2020 ConsenSys AG
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// Code generated by goff (v0.2.0) DO NOT EDIT
// Package ff contains field arithmetic operations
package ff
import (
"crypto/rand"
"math/big"
"math/bits"
mrand "math/rand"
"testing"
)
@ -21,7 +38,14 @@ func TestELEMENTCorrectnessAgainstBigInt(t *testing.T) {
modulusMinusOne.Sub(modulus, &one)
for i := 0; i < 1000; i++ {
var n int
if testing.Short() {
n = 10
} else {
n = 500
}
for i := 0; i < n; i++ {
// sample 2 random big int
b1, _ := rand.Int(rand.Reader, modulus)
@ -57,7 +81,7 @@ func TestELEMENTCorrectnessAgainstBigInt(t *testing.T) {
rbExp := new(big.Int).SetUint64(rExp)
var bMul, bAdd, bSub, bDiv, bNeg, bLsh, bInv, bExp, bSquare big.Int
var bMul, bAdd, bSub, bDiv, bNeg, bLsh, bInv, bExp, bExp2, bSquare big.Int
// e1 = mont(b1), e2 = mont(b2)
var e1, e2, eMul, eAdd, eSub, eDiv, eNeg, eLsh, eInv, eExp, eSquare, eMulAssign, eSubAssign, eAddAssign Element
@ -106,12 +130,40 @@ func TestELEMENTCorrectnessAgainstBigInt(t *testing.T) {
cmpEandB(&eNeg, &bNeg, "Neg")
cmpEandB(&eInv, &bInv, "Inv")
cmpEandB(&eExp, &bExp, "Exp")
cmpEandB(&eLsh, &bLsh, "Lsh")
// legendre symbol
if e1.Legendre() != big.Jacobi(b1, modulus) {
t.Fatal("legendre symbol computation failed")
}
if e2.Legendre() != big.Jacobi(b2, modulus) {
t.Fatal("legendre symbol computation failed")
}
// these are slow, killing circle ci
if n <= 5 {
// sqrt
var eSqrt, eExp2 Element
var bSqrt big.Int
bSqrt.ModSqrt(b1, modulus)
eSqrt.Sqrt(&e1)
cmpEandB(&eSqrt, &bSqrt, "Sqrt")
bits := b2.Bits()
exponent := make([]uint64, len(bits))
for k := 0; k < len(bits); k++ {
exponent[k] = uint64(bits[k])
}
eExp2.Exp(e1, exponent...)
bExp2.Exp(b1, b2, modulus)
cmpEandB(&eExp2, &bExp2, "Exp multi words")
}
}
}
func TestELEMENTIsRandom(t *testing.T) {
for i := 0; i < 1000; i++ {
for i := 0; i < 50; i++ {
var x, y Element
x.SetRandom()
y.SetRandom()
@ -125,7 +177,6 @@ func TestELEMENTIsRandom(t *testing.T) {
// benchmarks
// most benchmarks are rudimentary and should sample a large number of random inputs
// or be run multiple times to ensure it didn't measure the fastest path of the function
// TODO: clean up and push benchmarking branch
var benchResElement Element
@ -219,6 +270,15 @@ func BenchmarkSquareELEMENT(b *testing.B) {
}
}
func BenchmarkSqrtELEMENT(b *testing.B) {
var a Element
a.SetRandom()
b.ResetTimer()
for i := 0; i < b.N; i++ {
benchResElement.Sqrt(&a)
}
}
func BenchmarkMulAssignELEMENT(b *testing.B) {
x := Element{
1997599621687373223,
@ -232,3 +292,183 @@ func BenchmarkMulAssignELEMENT(b *testing.B) {
benchResElement.MulAssign(&x)
}
}
func BenchmarkMulAssignASMELEMENT(b *testing.B) {
x := Element{
1997599621687373223,
6052339484930628067,
10108755138030829701,
150537098327114917,
}
benchResElement.SetOne()
b.ResetTimer()
for i := 0; i < b.N; i++ {
MulAssignElement(&benchResElement, &x)
}
}
func TestELEMENTAsm(t *testing.T) {
// ensure ASM implementations matches the ones using math/bits
modulus, _ := new(big.Int).SetString("21888242871839275222246405745257275088548364400416034343698204186575808495617", 10)
for i := 0; i < 500; i++ {
// sample 2 random big int
b1, _ := rand.Int(rand.Reader, modulus)
b2, _ := rand.Int(rand.Reader, modulus)
// e1 = mont(b1), e2 = mont(b2)
var e1, e2, eTestMul, eMulAssign, eSquare, eTestSquare Element
e1.SetBigInt(b1)
e2.SetBigInt(b2)
eTestMul = e1
eTestMul.testMulAssign(&e2)
eMulAssign = e1
eMulAssign.MulAssign(&e2)
if !eTestMul.Equal(&eMulAssign) {
t.Fatal("inconsisntencies between MulAssign and testMulAssign --> check if MulAssign is calling ASM implementaiton on amd64")
}
// square
eSquare.Square(&e1)
eTestSquare.testSquare(&e1)
if !eTestSquare.Equal(&eSquare) {
t.Fatal("inconsisntencies between Square and testSquare --> check if Square is calling ASM implementaiton on amd64")
}
}
}
// this is here for consistency purposes, to ensure MulAssign on AMD64 using asm implementation gives consistent results
func (z *Element) testMulAssign(x *Element) *Element {
var t [4]uint64
var c [3]uint64
{
// round 0
v := z[0]
c[1], c[0] = bits.Mul64(v, x[0])
m := c[0] * 14042775128853446655
c[2] = madd0(m, 4891460686036598785, c[0])
c[1], c[0] = madd1(v, x[1], c[1])
c[2], t[0] = madd2(m, 2896914383306846353, c[2], c[0])
c[1], c[0] = madd1(v, x[2], c[1])
c[2], t[1] = madd2(m, 13281191951274694749, c[2], c[0])
c[1], c[0] = madd1(v, x[3], c[1])
t[3], t[2] = madd3(m, 3486998266802970665, c[0], c[2], c[1])
}
{
// round 1
v := z[1]
c[1], c[0] = madd1(v, x[0], t[0])
m := c[0] * 14042775128853446655
c[2] = madd0(m, 4891460686036598785, c[0])
c[1], c[0] = madd2(v, x[1], c[1], t[1])
c[2], t[0] = madd2(m, 2896914383306846353, c[2], c[0])
c[1], c[0] = madd2(v, x[2], c[1], t[2])
c[2], t[1] = madd2(m, 13281191951274694749, c[2], c[0])
c[1], c[0] = madd2(v, x[3], c[1], t[3])
t[3], t[2] = madd3(m, 3486998266802970665, c[0], c[2], c[1])
}
{
// round 2
v := z[2]
c[1], c[0] = madd1(v, x[0], t[0])
m := c[0] * 14042775128853446655
c[2] = madd0(m, 4891460686036598785, c[0])
c[1], c[0] = madd2(v, x[1], c[1], t[1])
c[2], t[0] = madd2(m, 2896914383306846353, c[2], c[0])
c[1], c[0] = madd2(v, x[2], c[1], t[2])
c[2], t[1] = madd2(m, 13281191951274694749, c[2], c[0])
c[1], c[0] = madd2(v, x[3], c[1], t[3])
t[3], t[2] = madd3(m, 3486998266802970665, c[0], c[2], c[1])
}
{
// round 3
v := z[3]
c[1], c[0] = madd1(v, x[0], t[0])
m := c[0] * 14042775128853446655
c[2] = madd0(m, 4891460686036598785, c[0])
c[1], c[0] = madd2(v, x[1], c[1], t[1])
c[2], z[0] = madd2(m, 2896914383306846353, c[2], c[0])
c[1], c[0] = madd2(v, x[2], c[1], t[2])
c[2], z[1] = madd2(m, 13281191951274694749, c[2], c[0])
c[1], c[0] = madd2(v, x[3], c[1], t[3])
z[3], z[2] = madd3(m, 3486998266802970665, c[0], c[2], c[1])
}
// if z > q --> z -= q
// note: this is NOT constant time
if !(z[3] < 3486998266802970665 || (z[3] == 3486998266802970665 && (z[2] < 13281191951274694749 || (z[2] == 13281191951274694749 && (z[1] < 2896914383306846353 || (z[1] == 2896914383306846353 && (z[0] < 4891460686036598785))))))) {
var b uint64
z[0], b = bits.Sub64(z[0], 4891460686036598785, 0)
z[1], b = bits.Sub64(z[1], 2896914383306846353, b)
z[2], b = bits.Sub64(z[2], 13281191951274694749, b)
z[3], _ = bits.Sub64(z[3], 3486998266802970665, b)
}
return z
}
// this is here for consistency purposes, to ensure Square on AMD64 using asm implementation gives consistent results
func (z *Element) testSquare(x *Element) *Element {
var p [4]uint64
var u, v uint64
{
// round 0
u, p[0] = bits.Mul64(x[0], x[0])
m := p[0] * 14042775128853446655
C := madd0(m, 4891460686036598785, p[0])
var t uint64
t, u, v = madd1sb(x[0], x[1], u)
C, p[0] = madd2(m, 2896914383306846353, v, C)
t, u, v = madd1s(x[0], x[2], t, u)
C, p[1] = madd2(m, 13281191951274694749, v, C)
_, u, v = madd1s(x[0], x[3], t, u)
p[3], p[2] = madd3(m, 3486998266802970665, v, C, u)
}
{
// round 1
m := p[0] * 14042775128853446655
C := madd0(m, 4891460686036598785, p[0])
u, v = madd1(x[1], x[1], p[1])
C, p[0] = madd2(m, 2896914383306846353, v, C)
var t uint64
t, u, v = madd2sb(x[1], x[2], p[2], u)
C, p[1] = madd2(m, 13281191951274694749, v, C)
_, u, v = madd2s(x[1], x[3], p[3], t, u)
p[3], p[2] = madd3(m, 3486998266802970665, v, C, u)
}
{
// round 2
m := p[0] * 14042775128853446655
C := madd0(m, 4891460686036598785, p[0])
C, p[0] = madd2(m, 2896914383306846353, p[1], C)
u, v = madd1(x[2], x[2], p[2])
C, p[1] = madd2(m, 13281191951274694749, v, C)
_, u, v = madd2sb(x[2], x[3], p[3], u)
p[3], p[2] = madd3(m, 3486998266802970665, v, C, u)
}
{
// round 3
m := p[0] * 14042775128853446655
C := madd0(m, 4891460686036598785, p[0])
C, z[0] = madd2(m, 2896914383306846353, p[1], C)
C, z[1] = madd2(m, 13281191951274694749, p[2], C)
u, v = madd1(x[3], x[3], p[3])
z[3], z[2] = madd3(m, 3486998266802970665, v, C, u)
}
// if z > q --> z -= q
// note: this is NOT constant time
if !(z[3] < 3486998266802970665 || (z[3] == 3486998266802970665 && (z[2] < 13281191951274694749 || (z[2] == 13281191951274694749 && (z[1] < 2896914383306846353 || (z[1] == 2896914383306846353 && (z[0] < 4891460686036598785))))))) {
var b uint64
z[0], b = bits.Sub64(z[0], 4891460686036598785, 0)
z[1], b = bits.Sub64(z[1], 2896914383306846353, b)
z[2], b = bits.Sub64(z[2], 13281191951274694749, b)
z[3], _ = bits.Sub64(z[3], 3486998266802970665, b)
}
return z
}

+ 1
- 0
go.mod

@ -7,4 +7,5 @@ require (
github.com/ethereum/go-ethereum v1.8.27
github.com/stretchr/testify v1.3.0
golang.org/x/crypto v0.0.0-20190621222207-cc06ce4a13d4
golang.org/x/sys v0.0.0-20190412213103-97732733099d
)

Loading…
Cancel
Save