@ -0,0 +1,240 @@ |
|||
package babyjub |
|||
|
|||
import ( |
|||
"fmt" |
|||
"math/big" |
|||
) |
|||
|
|||
// Q is the order of the integer field where the curve point coordinates are (Zq).
|
|||
var Q *big.Int |
|||
|
|||
// A is one of the babyjub constants.
|
|||
var A *big.Int |
|||
|
|||
// D is one of the babyjub constants.
|
|||
var D *big.Int |
|||
|
|||
// Zero is 0.
|
|||
var Zero *big.Int |
|||
|
|||
// One is 1.
|
|||
var One *big.Int |
|||
|
|||
// MinusOne is -1.
|
|||
var MinusOne *big.Int |
|||
|
|||
// Order of the babyjub curve.
|
|||
var Order *big.Int |
|||
|
|||
// SubOrder is the order of the subgroup of the babyjub curve that contains the
|
|||
// points that we use.
|
|||
var SubOrder *big.Int |
|||
|
|||
// B8 is a base point of the babyjub multiplied by 8 to make it a base point of
|
|||
// the subgroup in the curve.
|
|||
var B8 *Point |
|||
|
|||
// NewIntFromString creates a new big.Int from a decimal integer encoded as a
|
|||
// string. It will panic if the string is not a decimal integer.
|
|||
func NewIntFromString(s string) *big.Int { |
|||
v, ok := new(big.Int).SetString(s, 10) |
|||
if !ok { |
|||
panic(fmt.Sprintf("Bad base 10 string %s", s)) |
|||
} |
|||
return v |
|||
} |
|||
|
|||
// init initializes global numbers and the subgroup base.
|
|||
func init() { |
|||
Zero = big.NewInt(0) |
|||
One = big.NewInt(1) |
|||
MinusOne = big.NewInt(-1) |
|||
Q = NewIntFromString( |
|||
"21888242871839275222246405745257275088548364400416034343698204186575808495617") |
|||
A = NewIntFromString("168700") |
|||
D = NewIntFromString("168696") |
|||
|
|||
Order = NewIntFromString( |
|||
"21888242871839275222246405745257275088614511777268538073601725287587578984328") |
|||
SubOrder = new(big.Int).Rsh(Order, 3) |
|||
|
|||
B8 = NewPoint() |
|||
B8.X = NewIntFromString( |
|||
"17777552123799933955779906779655732241715742912184938656739573121738514868268") |
|||
B8.Y = NewIntFromString( |
|||
"2626589144620713026669568689430873010625803728049924121243784502389097019475") |
|||
} |
|||
|
|||
// Point represents a point of the babyjub curve.
|
|||
type Point struct { |
|||
X *big.Int |
|||
Y *big.Int |
|||
} |
|||
|
|||
// NewPoint creates a new Point.
|
|||
func NewPoint() *Point { |
|||
return &Point{X: big.NewInt(0), Y: big.NewInt(1)} |
|||
} |
|||
|
|||
// Set copies a Point c into the Point p
|
|||
func (p *Point) Set(c *Point) *Point { |
|||
p.X.Set(c.X) |
|||
p.Y.Set(c.Y) |
|||
return p |
|||
} |
|||
|
|||
// Add adds Point a and b into res
|
|||
func (res *Point) Add(a *Point, b *Point) *Point { |
|||
// x = (a.x * b.y + b.x * a.y) * (1 + D * a.x * b.x * a.y * b.y)^-1 mod q
|
|||
x1a := new(big.Int).Mul(a.X, b.Y) |
|||
x1b := new(big.Int).Mul(b.X, a.Y) |
|||
x1a.Add(x1a, x1b) // x1a = a.x * b.y + b.x * a.y
|
|||
|
|||
x2 := new(big.Int).Set(D) |
|||
x2.Mul(x2, a.X) |
|||
x2.Mul(x2, b.X) |
|||
x2.Mul(x2, a.Y) |
|||
x2.Mul(x2, b.Y) |
|||
x2.Add(One, x2) |
|||
x2.Mod(x2, Q) |
|||
x2.ModInverse(x2, Q) // x2 = (1 + D * a.x * b.x * a.y * b.y)^-1
|
|||
|
|||
// y = (a.y * b.y + A * a.x * a.x) * (1 - D * a.x * b.x * a.y * b.y)^-1 mod q
|
|||
y1a := new(big.Int).Mul(a.Y, b.Y) |
|||
y1b := new(big.Int).Set(A) |
|||
y1b.Mul(y1b, a.X) |
|||
y1b.Mul(y1b, b.X) |
|||
|
|||
y1a.Sub(y1a, y1b) // y1a = a.y * b.y - A * a.x * b.x
|
|||
|
|||
y2 := new(big.Int).Set(D) |
|||
y2.Mul(y2, a.X) |
|||
y2.Mul(y2, b.X) |
|||
y2.Mul(y2, a.Y) |
|||
y2.Mul(y2, b.Y) |
|||
y2.Sub(One, y2) |
|||
y2.Mod(y2, Q) |
|||
y2.ModInverse(y2, Q) // y2 = (1 - D * a.x * b.x * a.y * b.y)^-1
|
|||
|
|||
res.X = x1a.Mul(x1a, x2) |
|||
res.X = res.X.Mod(res.X, Q) |
|||
|
|||
res.Y = y1a.Mul(y1a, y2) |
|||
res.Y = res.Y.Mod(res.Y, Q) |
|||
|
|||
return res |
|||
} |
|||
|
|||
// Mul multiplies the Point p by the scalar s and stores the result in res,
|
|||
// which is also returned.
|
|||
func (res *Point) Mul(s *big.Int, p *Point) *Point { |
|||
res.X = big.NewInt(0) |
|||
res.Y = big.NewInt(1) |
|||
exp := NewPoint().Set(p) |
|||
|
|||
for i := 0; i < s.BitLen(); i++ { |
|||
if s.Bit(i) == 1 { |
|||
res.Add(res, exp) |
|||
} |
|||
exp.Add(exp, exp) |
|||
} |
|||
|
|||
return res |
|||
} |
|||
|
|||
// InCurve returns true when the Point p is in the babyjub curve.
|
|||
func (p *Point) InCurve() bool { |
|||
x2 := new(big.Int).Set(p.X) |
|||
x2.Mul(x2, x2) |
|||
x2.Mod(x2, Q) |
|||
|
|||
y2 := new(big.Int).Set(p.Y) |
|||
y2.Mul(y2, y2) |
|||
y2.Mod(y2, Q) |
|||
|
|||
a := new(big.Int).Mul(A, x2) |
|||
a.Add(a, y2) |
|||
a.Mod(a, Q) |
|||
|
|||
b := new(big.Int).Set(D) |
|||
b.Mul(b, x2) |
|||
b.Mul(b, y2) |
|||
b.Add(One, b) |
|||
b.Mod(b, Q) |
|||
|
|||
return a.Cmp(b) == 0 |
|||
} |
|||
|
|||
// InSubGroup returns true when the Point p is in the subgroup of the babyjub
|
|||
// curve.
|
|||
func (p *Point) InSubGroup() bool { |
|||
if !p.InCurve() { |
|||
return false |
|||
} |
|||
res := NewPoint().Mul(SubOrder, p) |
|||
return (res.X.Cmp(Zero) == 0) && (res.Y.Cmp(One) == 0) |
|||
} |
|||
|
|||
// PointCoordSign returns the sign of the curve point coordinate. It returns
|
|||
// false if the sign is positive and false if the sign is negative.
|
|||
func PointCoordSign(c *big.Int) bool { |
|||
if c.Cmp(new(big.Int).Rsh(Q, 1)) == 1 { |
|||
return true |
|||
} |
|||
return false |
|||
} |
|||
|
|||
func PackPoint(ay *big.Int, sign bool) [32]byte { |
|||
leBuf := BigIntLEBytes(ay) |
|||
if sign { |
|||
leBuf[31] = leBuf[31] | 0x80 |
|||
} |
|||
return leBuf |
|||
} |
|||
|
|||
// Compress the point into a 32 byte array that contains the y coordinate in
|
|||
// little endian and the sign of the x coordinate.
|
|||
func (p *Point) Compress() [32]byte { |
|||
sign := false |
|||
if PointCoordSign(p.X) { |
|||
sign = true |
|||
} |
|||
return PackPoint(p.Y, sign) |
|||
} |
|||
|
|||
// Decompress a compressed Point into p, and also returns the decompressed
|
|||
// Point. Returns error if the compressed Point is invalid.
|
|||
func (p *Point) Decompress(leBuf [32]byte) (*Point, error) { |
|||
sign := false |
|||
if (leBuf[31] & 0x80) != 0x00 { |
|||
sign = true |
|||
leBuf[31] = leBuf[31] & 0x7F |
|||
} |
|||
SetBigIntFromLEBytes(p.Y, leBuf[:]) |
|||
if p.Y.Cmp(Q) >= 0 { |
|||
return nil, fmt.Errorf("p.y >= Q") |
|||
} |
|||
|
|||
y2 := new(big.Int).Mul(p.Y, p.Y) |
|||
y2.Mod(y2, Q) |
|||
xa := big.NewInt(1) |
|||
xa.Sub(xa, y2) // xa == 1 - y^2
|
|||
|
|||
xb := new(big.Int).Mul(D, y2) |
|||
xb.Mod(xb, Q) |
|||
xb.Sub(A, xb) // xb = A - d * y^2
|
|||
|
|||
if xb.Cmp(big.NewInt(0)) == 0 { |
|||
return nil, fmt.Errorf("division by 0") |
|||
} |
|||
xb.ModInverse(xb, Q) |
|||
p.X.Mul(xa, xb) // xa / xb
|
|||
p.X.Mod(p.X, Q) |
|||
p.X.ModSqrt(p.X, Q) |
|||
if (sign && !PointCoordSign(p.X)) || (!sign && PointCoordSign(p.X)) { |
|||
p.X.Mul(p.X, MinusOne) |
|||
} |
|||
p.X.Mod(p.X, Q) |
|||
|
|||
return p, nil |
|||
} |
@ -0,0 +1,232 @@ |
|||
package babyjub |
|||
|
|||
import ( |
|||
// "fmt"
|
|||
"encoding/hex" |
|||
"github.com/stretchr/testify/assert" |
|||
"math/big" |
|||
"testing" |
|||
) |
|||
|
|||
func TestAdd1(t *testing.T) { |
|||
a := &Point{X: big.NewInt(0), Y: big.NewInt(1)} |
|||
b := &Point{X: big.NewInt(0), Y: big.NewInt(1)} |
|||
|
|||
c := NewPoint().Add(a, b) |
|||
// fmt.Printf("%v = 2 * %v", *c, *a)
|
|||
assert.Equal(t, "0", c.X.String()) |
|||
assert.Equal(t, "1", c.Y.String()) |
|||
} |
|||
|
|||
func TestAdd2(t *testing.T) { |
|||
aX := NewIntFromString( |
|||
"17777552123799933955779906779655732241715742912184938656739573121738514868268") |
|||
aY := NewIntFromString( |
|||
"2626589144620713026669568689430873010625803728049924121243784502389097019475") |
|||
a := &Point{X: aX, Y: aY} |
|||
|
|||
bX := NewIntFromString( |
|||
"17777552123799933955779906779655732241715742912184938656739573121738514868268") |
|||
bY := NewIntFromString( |
|||
"2626589144620713026669568689430873010625803728049924121243784502389097019475") |
|||
b := &Point{X: bX, Y: bY} |
|||
|
|||
c := NewPoint().Add(a, b) |
|||
// fmt.Printf("%v = 2 * %v", *c, *a)
|
|||
assert.Equal(t, |
|||
"6890855772600357754907169075114257697580319025794532037257385534741338397365", |
|||
c.X.String()) |
|||
assert.Equal(t, |
|||
"4338620300185947561074059802482547481416142213883829469920100239455078257889", |
|||
c.Y.String()) |
|||
} |
|||
|
|||
func TestAdd3(t *testing.T) { |
|||
aX := NewIntFromString( |
|||
"17777552123799933955779906779655732241715742912184938656739573121738514868268") |
|||
aY := NewIntFromString( |
|||
"2626589144620713026669568689430873010625803728049924121243784502389097019475") |
|||
a := &Point{X: aX, Y: aY} |
|||
|
|||
bX := NewIntFromString( |
|||
"16540640123574156134436876038791482806971768689494387082833631921987005038935") |
|||
bY := NewIntFromString( |
|||
"20819045374670962167435360035096875258406992893633759881276124905556507972311") |
|||
b := &Point{X: bX, Y: bY} |
|||
|
|||
c := NewPoint().Add(a, b) |
|||
// fmt.Printf("%v = 2 * %v", *c, *a)
|
|||
assert.Equal(t, |
|||
"7916061937171219682591368294088513039687205273691143098332585753343424131937", |
|||
c.X.String()) |
|||
assert.Equal(t, |
|||
"14035240266687799601661095864649209771790948434046947201833777492504781204499", |
|||
c.Y.String()) |
|||
} |
|||
|
|||
func TestAdd4(t *testing.T) { |
|||
aX := NewIntFromString( |
|||
"0") |
|||
aY := NewIntFromString( |
|||
"1") |
|||
a := &Point{X: aX, Y: aY} |
|||
|
|||
bX := NewIntFromString( |
|||
"16540640123574156134436876038791482806971768689494387082833631921987005038935") |
|||
bY := NewIntFromString( |
|||
"20819045374670962167435360035096875258406992893633759881276124905556507972311") |
|||
b := &Point{X: bX, Y: bY} |
|||
|
|||
c := NewPoint().Add(a, b) |
|||
// fmt.Printf("%v = 2 * %v", *c, *a)
|
|||
assert.Equal(t, |
|||
"16540640123574156134436876038791482806971768689494387082833631921987005038935", |
|||
c.X.String()) |
|||
assert.Equal(t, |
|||
"20819045374670962167435360035096875258406992893633759881276124905556507972311", |
|||
c.Y.String()) |
|||
} |
|||
|
|||
func TestInCurve1(t *testing.T) { |
|||
p := &Point{X: big.NewInt(0), Y: big.NewInt(1)} |
|||
assert.Equal(t, true, p.InCurve()) |
|||
} |
|||
|
|||
func TestInCurve2(t *testing.T) { |
|||
p := &Point{X: big.NewInt(1), Y: big.NewInt(0)} |
|||
assert.Equal(t, false, p.InCurve()) |
|||
} |
|||
|
|||
func TestMul0(t *testing.T) { |
|||
x := NewIntFromString( |
|||
"17777552123799933955779906779655732241715742912184938656739573121738514868268") |
|||
y := NewIntFromString( |
|||
"2626589144620713026669568689430873010625803728049924121243784502389097019475") |
|||
p := &Point{X: x, Y: y} |
|||
s := NewIntFromString("3") |
|||
|
|||
r2 := NewPoint().Add(p, p) |
|||
r2 = NewPoint().Add(r2, p) |
|||
r := NewPoint().Mul(s, p) |
|||
assert.Equal(t, r2.X.String(), r.X.String()) |
|||
assert.Equal(t, r2.Y.String(), r.Y.String()) |
|||
|
|||
assert.Equal(t, |
|||
"19372461775513343691590086534037741906533799473648040012278229434133483800898", |
|||
r.X.String()) |
|||
assert.Equal(t, |
|||
"9458658722007214007257525444427903161243386465067105737478306991484593958249", |
|||
r.Y.String()) |
|||
} |
|||
|
|||
func TestMul1(t *testing.T) { |
|||
x := NewIntFromString( |
|||
"17777552123799933955779906779655732241715742912184938656739573121738514868268") |
|||
y := NewIntFromString( |
|||
"2626589144620713026669568689430873010625803728049924121243784502389097019475") |
|||
p := &Point{X: x, Y: y} |
|||
s := NewIntFromString( |
|||
"14035240266687799601661095864649209771790948434046947201833777492504781204499") |
|||
r := NewPoint().Mul(s, p) |
|||
assert.Equal(t, |
|||
"17070357974431721403481313912716834497662307308519659060910483826664480189605", |
|||
r.X.String()) |
|||
assert.Equal(t, |
|||
"4014745322800118607127020275658861516666525056516280575712425373174125159339", |
|||
r.Y.String()) |
|||
} |
|||
|
|||
func TestMul2(t *testing.T) { |
|||
x := NewIntFromString( |
|||
"6890855772600357754907169075114257697580319025794532037257385534741338397365") |
|||
y := NewIntFromString( |
|||
"4338620300185947561074059802482547481416142213883829469920100239455078257889") |
|||
p := &Point{X: x, Y: y} |
|||
s := NewIntFromString( |
|||
"20819045374670962167435360035096875258406992893633759881276124905556507972311") |
|||
r := NewPoint().Mul(s, p) |
|||
assert.Equal(t, |
|||
"13563888653650925984868671744672725781658357821216877865297235725727006259983", |
|||
r.X.String()) |
|||
assert.Equal(t, |
|||
"8442587202676550862664528699803615547505326611544120184665036919364004251662", |
|||
r.Y.String()) |
|||
} |
|||
|
|||
func TestInCurve3(t *testing.T) { |
|||
x := NewIntFromString( |
|||
"17777552123799933955779906779655732241715742912184938656739573121738514868268") |
|||
y := NewIntFromString( |
|||
"2626589144620713026669568689430873010625803728049924121243784502389097019475") |
|||
p := &Point{X: x, Y: y} |
|||
assert.Equal(t, true, p.InCurve()) |
|||
} |
|||
|
|||
func TestInCurve4(t *testing.T) { |
|||
x := NewIntFromString( |
|||
"6890855772600357754907169075114257697580319025794532037257385534741338397365") |
|||
y := NewIntFromString( |
|||
"4338620300185947561074059802482547481416142213883829469920100239455078257889") |
|||
p := &Point{X: x, Y: y} |
|||
assert.Equal(t, true, p.InCurve()) |
|||
} |
|||
|
|||
func TestInSubGroup1(t *testing.T) { |
|||
x := NewIntFromString( |
|||
"17777552123799933955779906779655732241715742912184938656739573121738514868268") |
|||
y := NewIntFromString( |
|||
"2626589144620713026669568689430873010625803728049924121243784502389097019475") |
|||
p := &Point{X: x, Y: y} |
|||
assert.Equal(t, true, p.InSubGroup()) |
|||
} |
|||
|
|||
func TestInSubGroup2(t *testing.T) { |
|||
x := NewIntFromString( |
|||
"6890855772600357754907169075114257697580319025794532037257385534741338397365") |
|||
y := NewIntFromString( |
|||
"4338620300185947561074059802482547481416142213883829469920100239455078257889") |
|||
p := &Point{X: x, Y: y} |
|||
assert.Equal(t, true, p.InSubGroup()) |
|||
} |
|||
|
|||
func TestCompressDecompress1(t *testing.T) { |
|||
x := NewIntFromString( |
|||
"17777552123799933955779906779655732241715742912184938656739573121738514868268") |
|||
y := NewIntFromString( |
|||
"2626589144620713026669568689430873010625803728049924121243784502389097019475") |
|||
p := &Point{X: x, Y: y} |
|||
|
|||
buf := p.Compress() |
|||
assert.Equal(t, "53b81ed5bffe9545b54016234682e7b2f699bd42a5e9eae27ff4051bc698ce85", hex.EncodeToString(buf[:])) |
|||
|
|||
p2, err := NewPoint().Decompress(buf) |
|||
assert.Equal(t, nil, err) |
|||
assert.Equal(t, p.X.String(), p2.X.String()) |
|||
assert.Equal(t, p.Y.String(), p2.Y.String()) |
|||
} |
|||
|
|||
func TestCompressDecompress2(t *testing.T) { |
|||
x := NewIntFromString( |
|||
"6890855772600357754907169075114257697580319025794532037257385534741338397365") |
|||
y := NewIntFromString( |
|||
"4338620300185947561074059802482547481416142213883829469920100239455078257889") |
|||
p := &Point{X: x, Y: y} |
|||
|
|||
buf := p.Compress() |
|||
assert.Equal(t, "e114eb17eddf794f063a68fecac515e3620e131976108555735c8b0773929709", hex.EncodeToString(buf[:])) |
|||
|
|||
p2, err := NewPoint().Decompress(buf) |
|||
assert.Equal(t, nil, err) |
|||
assert.Equal(t, p.X.String(), p2.X.String()) |
|||
assert.Equal(t, p.Y.String(), p2.Y.String()) |
|||
} |
|||
|
|||
func TestCompressDecompressRnd(t *testing.T) { |
|||
for i := 0; i < 64; i++ { |
|||
p1 := NewPoint().Mul(big.NewInt(int64(i)), B8) |
|||
buf := p1.Compress() |
|||
p2, err := NewPoint().Decompress(buf) |
|||
assert.Equal(t, nil, err) |
|||
assert.Equal(t, p1, p2) |
|||
} |
|||
} |
@ -0,0 +1,211 @@ |
|||
package babyjub |
|||
|
|||
import ( |
|||
"crypto/rand" |
|||
// "encoding/hex"
|
|||
// "fmt"
|
|||
common3 "github.com/iden3/go-iden3/common" |
|||
"github.com/iden3/go-iden3/crypto/mimc7" |
|||
// "golang.org/x/crypto/blake2b"
|
|||
"math/big" |
|||
) |
|||
|
|||
// pruneBuffer prunes the buffer during key generation according to RFC 8032.
|
|||
// https://tools.ietf.org/html/rfc8032#page-13
|
|||
func pruneBuffer(buf *[32]byte) *[32]byte { |
|||
buf[0] = buf[0] & 0xF8 |
|||
buf[31] = buf[31] & 0x7F |
|||
buf[31] = buf[31] | 0x40 |
|||
return buf |
|||
} |
|||
|
|||
// PrivateKey is an EdDSA private key, which is a 32byte buffer.
|
|||
type PrivateKey [32]byte |
|||
|
|||
// NewRandPrivKey generates a new random private key (using cryptographically
|
|||
// secure randomness).
|
|||
func NewRandPrivKey() PrivateKey { |
|||
var k PrivateKey |
|||
_, err := rand.Read(k[:]) |
|||
if err != nil { |
|||
panic(err) |
|||
} |
|||
return k |
|||
} |
|||
|
|||
// Scalar converts a private key into the scalar value s following the EdDSA
|
|||
// standard, and using blake-512 hash.
|
|||
func (k *PrivateKey) Scalar() *PrivKeyScalar { |
|||
sBuf := Blake512(k[:]) |
|||
sBuf32 := [32]byte{} |
|||
copy(sBuf32[:], sBuf[:32]) |
|||
pruneBuffer(&sBuf32) |
|||
s := new(big.Int) |
|||
SetBigIntFromLEBytes(s, sBuf32[:]) |
|||
s.Rsh(s, 3) |
|||
return NewPrivKeyScalar(s) |
|||
} |
|||
|
|||
// Pub returns the public key corresponding to a private key.
|
|||
func (k *PrivateKey) Public() *PublicKey { |
|||
return k.Scalar().Public() |
|||
} |
|||
|
|||
// PrivKeyScalar represents the scalar s output of a private key
|
|||
type PrivKeyScalar big.Int |
|||
|
|||
// NewPrivKeyScalar creates a new PrivKeyScalar from a big.Int
|
|||
func NewPrivKeyScalar(s *big.Int) *PrivKeyScalar { |
|||
sk := PrivKeyScalar(*s) |
|||
return &sk |
|||
} |
|||
|
|||
// Pub returns the public key corresponding to the scalar value s of a private
|
|||
// key.
|
|||
func (s *PrivKeyScalar) Public() *PublicKey { |
|||
p := NewPoint().Mul((*big.Int)(s), B8) |
|||
pk := PublicKey(*p) |
|||
return &pk |
|||
} |
|||
|
|||
// BigInt returns the big.Int corresponding to a PrivKeyScalar.
|
|||
func (s *PrivKeyScalar) BigInt() *big.Int { |
|||
return (*big.Int)(s) |
|||
} |
|||
|
|||
// PublicKey represents an EdDSA public key, which is a curve point.
|
|||
type PublicKey Point |
|||
|
|||
func (pk PublicKey) MarshalText() ([]byte, error) { |
|||
pkc := pk.Compress() |
|||
return common3.Hex(pkc[:]).MarshalText() |
|||
} |
|||
|
|||
func (pk PublicKey) String() string { |
|||
pkc := pk.Compress() |
|||
return common3.Hex(pkc[:]).String() |
|||
} |
|||
|
|||
func (pk *PublicKey) UnmarshalText(h []byte) error { |
|||
var pkc PublicKeyComp |
|||
if err := common3.HexDecodeInto(pkc[:], h); err != nil { |
|||
return err |
|||
} |
|||
pkd, err := pkc.Decompress() |
|||
if err != nil { |
|||
return err |
|||
} |
|||
*pk = *pkd |
|||
return nil |
|||
} |
|||
|
|||
// Point returns the Point corresponding to a PublicKey.
|
|||
func (p *PublicKey) Point() *Point { |
|||
return (*Point)(p) |
|||
} |
|||
|
|||
// PublicKeyComp represents a compressed EdDSA Public key; it's a compressed curve
|
|||
// point.
|
|||
type PublicKeyComp [32]byte |
|||
|
|||
func (buf PublicKeyComp) MarshalText() ([]byte, error) { return common3.Hex(buf[:]).MarshalText() } |
|||
func (buf PublicKeyComp) String() string { return common3.Hex(buf[:]).String() } |
|||
func (buf *PublicKeyComp) UnmarshalText(h []byte) error { return common3.HexDecodeInto(buf[:], h) } |
|||
|
|||
func (p *PublicKey) Compress() PublicKeyComp { |
|||
return PublicKeyComp((*Point)(p).Compress()) |
|||
} |
|||
|
|||
func (p *PublicKeyComp) Decompress() (*PublicKey, error) { |
|||
point, err := NewPoint().Decompress(*p) |
|||
if err != nil { |
|||
return nil, err |
|||
} |
|||
pk := PublicKey(*point) |
|||
return &pk, nil |
|||
} |
|||
|
|||
// Signature represents an EdDSA uncompressed signature.
|
|||
type Signature struct { |
|||
R8 *Point |
|||
S *big.Int |
|||
} |
|||
|
|||
// SignatureComp represents a compressed EdDSA signature.
|
|||
type SignatureComp [64]byte |
|||
|
|||
func (buf SignatureComp) MarshalText() ([]byte, error) { return common3.Hex(buf[:]).MarshalText() } |
|||
func (buf SignatureComp) String() string { return common3.Hex(buf[:]).String() } |
|||
func (buf *SignatureComp) UnmarshalText(h []byte) error { return common3.HexDecodeInto(buf[:], h) } |
|||
|
|||
// Compress an EdDSA signature by concatenating the compression of
|
|||
// the point R8 and the Little-Endian encoding of S.
|
|||
func (s *Signature) Compress() SignatureComp { |
|||
R8p := s.R8.Compress() |
|||
Sp := BigIntLEBytes(s.S) |
|||
buf := [64]byte{} |
|||
copy(buf[:32], R8p[:]) |
|||
copy(buf[32:], Sp[:]) |
|||
return SignatureComp(buf) |
|||
} |
|||
|
|||
// Decompress a compressed signature into s, and also returns the decompressed
|
|||
// signature. Returns error if the Point decompression fails.
|
|||
func (s *Signature) Decompress(buf [64]byte) (*Signature, error) { |
|||
R8p := [32]byte{} |
|||
copy(R8p[:], buf[:32]) |
|||
var err error |
|||
if s.R8, err = NewPoint().Decompress(R8p); err != nil { |
|||
return nil, err |
|||
} |
|||
s.S = SetBigIntFromLEBytes(new(big.Int), buf[32:]) |
|||
return s, nil |
|||
} |
|||
|
|||
// Decompress a compressed signature. Returns error if the Point decompression
|
|||
// fails.
|
|||
func (s *SignatureComp) Decompress() (*Signature, error) { |
|||
return new(Signature).Decompress(*s) |
|||
} |
|||
|
|||
// SignMimc7 signs a message encoded as a big.Int in Zq using blake-512 hash
|
|||
// for buffer hashing and mimc7 for big.Int hashing.
|
|||
func (k *PrivateKey) SignMimc7(msg *big.Int) *Signature { |
|||
h1 := Blake512(k[:]) |
|||
msgBuf := BigIntLEBytes(msg) |
|||
msgBuf32 := [32]byte{} |
|||
copy(msgBuf32[:], msgBuf[:]) |
|||
rBuf := Blake512(append(h1[32:], msgBuf32[:]...)) |
|||
r := SetBigIntFromLEBytes(new(big.Int), rBuf) // r = H(H_{32..63}(k), msg)
|
|||
r.Mod(r, SubOrder) |
|||
R8 := NewPoint().Mul(r, B8) // R8 = r * 8 * B
|
|||
A := k.Public().Point() |
|||
hmInput, err := mimc7.BigIntsToRElems([]*big.Int{R8.X, R8.Y, A.X, A.Y, msg}) |
|||
if err != nil { |
|||
panic(err) |
|||
} |
|||
hm := mimc7.Hash(hmInput, nil) // hm = H1(8*R.x, 8*R.y, A.x, A.y, msg)
|
|||
S := new(big.Int).Lsh(k.Scalar().BigInt(), 3) |
|||
S = S.Mul(hm, S) |
|||
S.Add(r, S) |
|||
S.Mod(S, SubOrder) // S = r + hm * 8 * s
|
|||
|
|||
return &Signature{R8: R8, S: S} |
|||
} |
|||
|
|||
// VerifyMimc7 verifies the signature of a message encoded as a big.Int in Zq
|
|||
// using blake-512 hash for buffer hashing and mimc7 for big.Int hashing.
|
|||
func (p *PublicKey) VerifyMimc7(msg *big.Int, sig *Signature) bool { |
|||
hmInput, err := mimc7.BigIntsToRElems([]*big.Int{sig.R8.X, sig.R8.Y, p.X, p.Y, msg}) |
|||
if err != nil { |
|||
panic(err) |
|||
} |
|||
hm := mimc7.Hash(hmInput, nil) // hm = H1(8*R.x, 8*R.y, A.x, A.y, msg)
|
|||
|
|||
left := NewPoint().Mul(sig.S, B8) // left = s * 8 * B
|
|||
r1 := big.NewInt(8) |
|||
r1.Mul(r1, hm) |
|||
right := NewPoint().Mul(r1, p.Point()) |
|||
right.Add(sig.R8, right) // right = 8 * R + 8 * hm * A
|
|||
return (left.X.Cmp(right.X) == 0) && (left.Y.Cmp(right.Y) == 0) |
|||
} |
@ -0,0 +1,89 @@ |
|||
package babyjub |
|||
|
|||
import ( |
|||
"crypto/rand" |
|||
"encoding/hex" |
|||
"fmt" |
|||
|
|||
"github.com/stretchr/testify/assert" |
|||
|
|||
// "golang.org/x/crypto/blake2b"
|
|||
"math/big" |
|||
"testing" |
|||
) |
|||
|
|||
func genInputs() (*PrivateKey, *big.Int) { |
|||
k := NewRandPrivKey() |
|||
fmt.Println("k", hex.EncodeToString(k[:])) |
|||
|
|||
msgBuf := [32]byte{} |
|||
rand.Read(msgBuf[:]) |
|||
msg := SetBigIntFromLEBytes(new(big.Int), msgBuf[:]) |
|||
msg.Mod(msg, Q) |
|||
fmt.Println("msg", msg) |
|||
|
|||
return &k, msg |
|||
} |
|||
|
|||
func TestSignVerify1(t *testing.T) { |
|||
var k PrivateKey |
|||
hex.Decode(k[:], []byte("0001020304050607080900010203040506070809000102030405060708090001")) |
|||
msgBuf, err := hex.DecodeString("00010203040506070809") |
|||
if err != nil { |
|||
panic(err) |
|||
} |
|||
msg := SetBigIntFromLEBytes(new(big.Int), msgBuf) |
|||
|
|||
pk := k.Public() |
|||
assert.Equal(t, |
|||
"2610057752638682202795145288373380503107623443963127956230801721756904484787", |
|||
pk.X.String()) |
|||
assert.Equal(t, |
|||
"16617171478497210597712478520507818259149717466230047843969353176573634386897", |
|||
pk.Y.String()) |
|||
|
|||
sig := k.SignMimc7(msg) |
|||
assert.Equal(t, |
|||
"4974729414807584049518234760796200867685098748448054182902488636762478901554", |
|||
sig.R8.X.String()) |
|||
assert.Equal(t, |
|||
"18714049394522540751536514815950425694461287643205706667341348804546050128733", |
|||
sig.R8.Y.String()) |
|||
assert.Equal(t, |
|||
"2171284143457722024136077617757713039502332290425057126942676527240038689549", |
|||
sig.S.String()) |
|||
|
|||
ok := pk.VerifyMimc7(msg, sig) |
|||
assert.Equal(t, true, ok) |
|||
|
|||
sigBuf := sig.Compress() |
|||
sig2, err := new(Signature).Decompress(sigBuf) |
|||
assert.Equal(t, nil, err) |
|||
|
|||
assert.Equal(t, ""+ |
|||
"5dfb6f843c023fe3e52548ccf22e55c81b426f7af81b4f51f7152f2fcfc65f29"+ |
|||
"0dab19c5a0a75973cd75a54780de0c3a41ede6f57396fe99b5307fff3ce7cc04", |
|||
hex.EncodeToString(sigBuf[:])) |
|||
|
|||
ok = pk.VerifyMimc7(msg, sig2) |
|||
assert.Equal(t, true, ok) |
|||
} |
|||
|
|||
func TestCompressDecompress(t *testing.T) { |
|||
var k PrivateKey |
|||
hex.Decode(k[:], []byte("0001020304050607080900010203040506070809000102030405060708090001")) |
|||
pk := k.Public() |
|||
for i := 0; i < 64; i++ { |
|||
msgBuf, err := hex.DecodeString(fmt.Sprintf("000102030405060708%02d", i)) |
|||
if err != nil { |
|||
panic(err) |
|||
} |
|||
msg := SetBigIntFromLEBytes(new(big.Int), msgBuf) |
|||
sig := k.SignMimc7(msg) |
|||
sigBuf := sig.Compress() |
|||
sig2, err := new(Signature).Decompress(sigBuf) |
|||
assert.Equal(t, nil, err) |
|||
ok := pk.VerifyMimc7(msg, sig2) |
|||
assert.Equal(t, true, ok) |
|||
} |
|||
} |
@ -0,0 +1,39 @@ |
|||
package babyjub |
|||
|
|||
import ( |
|||
"github.com/dchest/blake512" // I have personally reviewed that this module doesn't do anything suspicious
|
|||
"math/big" |
|||
) |
|||
|
|||
// SwapEndianness swaps the endianness of the value encoded in xs. If xs is
|
|||
// Big-Endian, the result will be Little-Endian and viceversa.
|
|||
func SwapEndianness(xs []byte) []byte { |
|||
ys := make([]byte, len(xs)) |
|||
for i, b := range xs { |
|||
ys[len(xs)-1-i] = b |
|||
} |
|||
return ys |
|||
} |
|||
|
|||
// BigIntLEBytes encodes a big.Int into an array in Little-Endian.
|
|||
func BigIntLEBytes(v *big.Int) [32]byte { |
|||
le := SwapEndianness(v.Bytes()) |
|||
res := [32]byte{} |
|||
copy(res[:], le) |
|||
return res |
|||
} |
|||
|
|||
// SetBigIntFromLEBytes sets the value of a big.Int from a Little-Endian
|
|||
// encoded value.
|
|||
func SetBigIntFromLEBytes(v *big.Int, leBuf []byte) *big.Int { |
|||
beBuf := SwapEndianness(leBuf) |
|||
return v.SetBytes(beBuf) |
|||
} |
|||
|
|||
// Blake512 performs the blake-512 hash over the buffer m. Note that this is
|
|||
// the original blake from the SHA3 competition and not the new blake2 version.
|
|||
func Blake512(m []byte) []byte { |
|||
h := blake512.New() |
|||
h.Write(m[:]) |
|||
return h.Sum(nil) |
|||
} |