mirror of
https://github.com/arnaucube/go-iden3-crypto.git
synced 2026-02-06 19:16:43 +01:00
Add goff generated finite field arithmetic code for used field
This commit is contained in:
122
ff/arith.go
Normal file
122
ff/arith.go
Normal file
@@ -0,0 +1,122 @@
|
||||
// Copyright 2020 ConsenSys AG
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
// Code generated by goff DO NOT EDIT
|
||||
|
||||
package ff
|
||||
|
||||
import (
|
||||
"math/bits"
|
||||
)
|
||||
|
||||
func madd(a, b, t, u, v uint64) (uint64, uint64, uint64) {
|
||||
var carry uint64
|
||||
hi, lo := bits.Mul64(a, b)
|
||||
v, carry = bits.Add64(lo, v, 0)
|
||||
u, carry = bits.Add64(hi, u, carry)
|
||||
t, _ = bits.Add64(t, 0, carry)
|
||||
return t, u, v
|
||||
}
|
||||
|
||||
// madd0 hi = a*b + c (discards lo bits)
|
||||
func madd0(a, b, c uint64) (hi uint64) {
|
||||
var carry, lo uint64
|
||||
hi, lo = bits.Mul64(a, b)
|
||||
_, carry = bits.Add64(lo, c, 0)
|
||||
hi, _ = bits.Add64(hi, 0, carry)
|
||||
return
|
||||
}
|
||||
|
||||
// madd1 hi, lo = a*b + c
|
||||
func madd1(a, b, c uint64) (hi uint64, lo uint64) {
|
||||
var carry uint64
|
||||
hi, lo = bits.Mul64(a, b)
|
||||
lo, carry = bits.Add64(lo, c, 0)
|
||||
hi, _ = bits.Add64(hi, 0, carry)
|
||||
return
|
||||
}
|
||||
|
||||
// madd2 hi, lo = a*b + c + d
|
||||
func madd2(a, b, c, d uint64) (hi uint64, lo uint64) {
|
||||
var carry uint64
|
||||
hi, lo = bits.Mul64(a, b)
|
||||
c, carry = bits.Add64(c, d, 0)
|
||||
hi, _ = bits.Add64(hi, 0, carry)
|
||||
lo, carry = bits.Add64(lo, c, 0)
|
||||
hi, _ = bits.Add64(hi, 0, carry)
|
||||
return
|
||||
}
|
||||
|
||||
// madd2s superhi, hi, lo = 2*a*b + c + d + e
|
||||
func madd2s(a, b, c, d, e uint64) (superhi, hi, lo uint64) {
|
||||
var carry, sum uint64
|
||||
|
||||
hi, lo = bits.Mul64(a, b)
|
||||
lo, carry = bits.Add64(lo, lo, 0)
|
||||
hi, superhi = bits.Add64(hi, hi, carry)
|
||||
|
||||
sum, carry = bits.Add64(c, e, 0)
|
||||
hi, _ = bits.Add64(hi, 0, carry)
|
||||
lo, carry = bits.Add64(lo, sum, 0)
|
||||
hi, _ = bits.Add64(hi, 0, carry)
|
||||
hi, _ = bits.Add64(hi, 0, d)
|
||||
return
|
||||
}
|
||||
|
||||
func madd1s(a, b, d, e uint64) (superhi, hi, lo uint64) {
|
||||
var carry uint64
|
||||
|
||||
hi, lo = bits.Mul64(a, b)
|
||||
lo, carry = bits.Add64(lo, lo, 0)
|
||||
hi, superhi = bits.Add64(hi, hi, carry)
|
||||
lo, carry = bits.Add64(lo, e, 0)
|
||||
hi, _ = bits.Add64(hi, 0, carry)
|
||||
hi, _ = bits.Add64(hi, 0, d)
|
||||
return
|
||||
}
|
||||
|
||||
func madd2sb(a, b, c, e uint64) (superhi, hi, lo uint64) {
|
||||
var carry, sum uint64
|
||||
|
||||
hi, lo = bits.Mul64(a, b)
|
||||
lo, carry = bits.Add64(lo, lo, 0)
|
||||
hi, superhi = bits.Add64(hi, hi, carry)
|
||||
|
||||
sum, carry = bits.Add64(c, e, 0)
|
||||
hi, _ = bits.Add64(hi, 0, carry)
|
||||
lo, carry = bits.Add64(lo, sum, 0)
|
||||
hi, _ = bits.Add64(hi, 0, carry)
|
||||
return
|
||||
}
|
||||
|
||||
func madd1sb(a, b, e uint64) (superhi, hi, lo uint64) {
|
||||
var carry uint64
|
||||
|
||||
hi, lo = bits.Mul64(a, b)
|
||||
lo, carry = bits.Add64(lo, lo, 0)
|
||||
hi, superhi = bits.Add64(hi, hi, carry)
|
||||
lo, carry = bits.Add64(lo, e, 0)
|
||||
hi, _ = bits.Add64(hi, 0, carry)
|
||||
return
|
||||
}
|
||||
|
||||
func madd3(a, b, c, d, e uint64) (hi uint64, lo uint64) {
|
||||
var carry uint64
|
||||
hi, lo = bits.Mul64(a, b)
|
||||
c, carry = bits.Add64(c, d, 0)
|
||||
hi, _ = bits.Add64(hi, 0, carry)
|
||||
lo, carry = bits.Add64(lo, c, 0)
|
||||
hi, _ = bits.Add64(hi, e, carry)
|
||||
return
|
||||
}
|
||||
764
ff/element.go
Normal file
764
ff/element.go
Normal file
@@ -0,0 +1,764 @@
|
||||
// Copyright 2020 ConsenSys AG
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
// field modulus q =
|
||||
//
|
||||
// 21888242871839275222246405745257275088548364400416034343698204186575808495617
|
||||
// Code generated by goff DO NOT EDIT
|
||||
// goff version: - build:
|
||||
// Element are assumed to be in Montgomery form in all methods
|
||||
|
||||
// Package ff (generated by goff) contains field arithmetics operations
|
||||
package ff
|
||||
|
||||
import (
|
||||
"crypto/rand"
|
||||
"encoding/binary"
|
||||
"io"
|
||||
"math/big"
|
||||
"math/bits"
|
||||
"sync"
|
||||
|
||||
"unsafe"
|
||||
)
|
||||
|
||||
// Element represents a field element stored on 4 words (uint64)
|
||||
// Element are assumed to be in Montgomery form in all methods
|
||||
type Element [4]uint64
|
||||
|
||||
// ElementLimbs number of 64 bits words needed to represent Element
|
||||
const ElementLimbs = 4
|
||||
|
||||
// ElementBits number bits needed to represent Element
|
||||
const ElementBits = 254
|
||||
|
||||
// SetUint64 z = v, sets z LSB to v (non-Montgomery form) and convert z to Montgomery form
|
||||
func (z *Element) SetUint64(v uint64) *Element {
|
||||
z[0] = v
|
||||
z[1] = 0
|
||||
z[2] = 0
|
||||
z[3] = 0
|
||||
return z.ToMont()
|
||||
}
|
||||
|
||||
// Set z = x
|
||||
func (z *Element) Set(x *Element) *Element {
|
||||
z[0] = x[0]
|
||||
z[1] = x[1]
|
||||
z[2] = x[2]
|
||||
z[3] = x[3]
|
||||
return z
|
||||
}
|
||||
|
||||
// SetZero z = 0
|
||||
func (z *Element) SetZero() *Element {
|
||||
z[0] = 0
|
||||
z[1] = 0
|
||||
z[2] = 0
|
||||
z[3] = 0
|
||||
return z
|
||||
}
|
||||
|
||||
// SetOne z = 1 (in Montgomery form)
|
||||
func (z *Element) SetOne() *Element {
|
||||
z[0] = 12436184717236109307
|
||||
z[1] = 3962172157175319849
|
||||
z[2] = 7381016538464732718
|
||||
z[3] = 1011752739694698287
|
||||
return z
|
||||
}
|
||||
|
||||
// Neg z = q - x
|
||||
func (z *Element) Neg(x *Element) *Element {
|
||||
if x.IsZero() {
|
||||
return z.SetZero()
|
||||
}
|
||||
var borrow uint64
|
||||
z[0], borrow = bits.Sub64(4891460686036598785, x[0], 0)
|
||||
z[1], borrow = bits.Sub64(2896914383306846353, x[1], borrow)
|
||||
z[2], borrow = bits.Sub64(13281191951274694749, x[2], borrow)
|
||||
z[3], _ = bits.Sub64(3486998266802970665, x[3], borrow)
|
||||
return z
|
||||
}
|
||||
|
||||
// Div z = x*y^-1 mod q
|
||||
func (z *Element) Div(x, y *Element) *Element {
|
||||
var yInv Element
|
||||
yInv.Inverse(y)
|
||||
z.Mul(x, &yInv)
|
||||
return z
|
||||
}
|
||||
|
||||
// Equal returns z == x
|
||||
func (z *Element) Equal(x *Element) bool {
|
||||
return (z[3] == x[3]) && (z[2] == x[2]) && (z[1] == x[1]) && (z[0] == x[0])
|
||||
}
|
||||
|
||||
// IsZero returns z == 0
|
||||
func (z *Element) IsZero() bool {
|
||||
return (z[3] | z[2] | z[1] | z[0]) == 0
|
||||
}
|
||||
|
||||
// field modulus stored as big.Int
|
||||
var _elementModulusBigInt big.Int
|
||||
var onceelementModulus sync.Once
|
||||
|
||||
func elementModulusBigInt() *big.Int {
|
||||
onceelementModulus.Do(func() {
|
||||
_elementModulusBigInt.SetString("21888242871839275222246405745257275088548364400416034343698204186575808495617", 10)
|
||||
})
|
||||
return &_elementModulusBigInt
|
||||
}
|
||||
|
||||
// Inverse z = x^-1 mod q
|
||||
// Algorithm 16 in "Efficient Software-Implementation of Finite Fields with Applications to Cryptography"
|
||||
// if x == 0, sets and returns z = x
|
||||
func (z *Element) Inverse(x *Element) *Element {
|
||||
if x.IsZero() {
|
||||
return z.Set(x)
|
||||
}
|
||||
|
||||
// initialize u = q
|
||||
var u = Element{
|
||||
4891460686036598785,
|
||||
2896914383306846353,
|
||||
13281191951274694749,
|
||||
3486998266802970665,
|
||||
}
|
||||
|
||||
// initialize s = r^2
|
||||
var s = Element{
|
||||
1997599621687373223,
|
||||
6052339484930628067,
|
||||
10108755138030829701,
|
||||
150537098327114917,
|
||||
}
|
||||
|
||||
// r = 0
|
||||
r := Element{}
|
||||
|
||||
v := *x
|
||||
|
||||
var carry, borrow, t, t2 uint64
|
||||
var bigger, uIsOne, vIsOne bool
|
||||
|
||||
for !uIsOne && !vIsOne {
|
||||
for v[0]&1 == 0 {
|
||||
|
||||
// v = v >> 1
|
||||
t2 = v[3] << 63
|
||||
v[3] >>= 1
|
||||
t = t2
|
||||
t2 = v[2] << 63
|
||||
v[2] = (v[2] >> 1) | t
|
||||
t = t2
|
||||
t2 = v[1] << 63
|
||||
v[1] = (v[1] >> 1) | t
|
||||
t = t2
|
||||
v[0] = (v[0] >> 1) | t
|
||||
|
||||
if s[0]&1 == 1 {
|
||||
|
||||
// s = s + q
|
||||
s[0], carry = bits.Add64(s[0], 4891460686036598785, 0)
|
||||
s[1], carry = bits.Add64(s[1], 2896914383306846353, carry)
|
||||
s[2], carry = bits.Add64(s[2], 13281191951274694749, carry)
|
||||
s[3], _ = bits.Add64(s[3], 3486998266802970665, carry)
|
||||
|
||||
}
|
||||
|
||||
// s = s >> 1
|
||||
t2 = s[3] << 63
|
||||
s[3] >>= 1
|
||||
t = t2
|
||||
t2 = s[2] << 63
|
||||
s[2] = (s[2] >> 1) | t
|
||||
t = t2
|
||||
t2 = s[1] << 63
|
||||
s[1] = (s[1] >> 1) | t
|
||||
t = t2
|
||||
s[0] = (s[0] >> 1) | t
|
||||
|
||||
}
|
||||
for u[0]&1 == 0 {
|
||||
|
||||
// u = u >> 1
|
||||
t2 = u[3] << 63
|
||||
u[3] >>= 1
|
||||
t = t2
|
||||
t2 = u[2] << 63
|
||||
u[2] = (u[2] >> 1) | t
|
||||
t = t2
|
||||
t2 = u[1] << 63
|
||||
u[1] = (u[1] >> 1) | t
|
||||
t = t2
|
||||
u[0] = (u[0] >> 1) | t
|
||||
|
||||
if r[0]&1 == 1 {
|
||||
|
||||
// r = r + q
|
||||
r[0], carry = bits.Add64(r[0], 4891460686036598785, 0)
|
||||
r[1], carry = bits.Add64(r[1], 2896914383306846353, carry)
|
||||
r[2], carry = bits.Add64(r[2], 13281191951274694749, carry)
|
||||
r[3], _ = bits.Add64(r[3], 3486998266802970665, carry)
|
||||
|
||||
}
|
||||
|
||||
// r = r >> 1
|
||||
t2 = r[3] << 63
|
||||
r[3] >>= 1
|
||||
t = t2
|
||||
t2 = r[2] << 63
|
||||
r[2] = (r[2] >> 1) | t
|
||||
t = t2
|
||||
t2 = r[1] << 63
|
||||
r[1] = (r[1] >> 1) | t
|
||||
t = t2
|
||||
r[0] = (r[0] >> 1) | t
|
||||
|
||||
}
|
||||
|
||||
// v >= u
|
||||
bigger = !(v[3] < u[3] || (v[3] == u[3] && (v[2] < u[2] || (v[2] == u[2] && (v[1] < u[1] || (v[1] == u[1] && (v[0] < u[0])))))))
|
||||
|
||||
if bigger {
|
||||
|
||||
// v = v - u
|
||||
v[0], borrow = bits.Sub64(v[0], u[0], 0)
|
||||
v[1], borrow = bits.Sub64(v[1], u[1], borrow)
|
||||
v[2], borrow = bits.Sub64(v[2], u[2], borrow)
|
||||
v[3], _ = bits.Sub64(v[3], u[3], borrow)
|
||||
|
||||
// r >= s
|
||||
bigger = !(r[3] < s[3] || (r[3] == s[3] && (r[2] < s[2] || (r[2] == s[2] && (r[1] < s[1] || (r[1] == s[1] && (r[0] < s[0])))))))
|
||||
|
||||
if bigger {
|
||||
|
||||
// s = s + q
|
||||
s[0], carry = bits.Add64(s[0], 4891460686036598785, 0)
|
||||
s[1], carry = bits.Add64(s[1], 2896914383306846353, carry)
|
||||
s[2], carry = bits.Add64(s[2], 13281191951274694749, carry)
|
||||
s[3], _ = bits.Add64(s[3], 3486998266802970665, carry)
|
||||
|
||||
}
|
||||
|
||||
// s = s - r
|
||||
s[0], borrow = bits.Sub64(s[0], r[0], 0)
|
||||
s[1], borrow = bits.Sub64(s[1], r[1], borrow)
|
||||
s[2], borrow = bits.Sub64(s[2], r[2], borrow)
|
||||
s[3], _ = bits.Sub64(s[3], r[3], borrow)
|
||||
|
||||
} else {
|
||||
|
||||
// u = u - v
|
||||
u[0], borrow = bits.Sub64(u[0], v[0], 0)
|
||||
u[1], borrow = bits.Sub64(u[1], v[1], borrow)
|
||||
u[2], borrow = bits.Sub64(u[2], v[2], borrow)
|
||||
u[3], _ = bits.Sub64(u[3], v[3], borrow)
|
||||
|
||||
// s >= r
|
||||
bigger = !(s[3] < r[3] || (s[3] == r[3] && (s[2] < r[2] || (s[2] == r[2] && (s[1] < r[1] || (s[1] == r[1] && (s[0] < r[0])))))))
|
||||
|
||||
if bigger {
|
||||
|
||||
// r = r + q
|
||||
r[0], carry = bits.Add64(r[0], 4891460686036598785, 0)
|
||||
r[1], carry = bits.Add64(r[1], 2896914383306846353, carry)
|
||||
r[2], carry = bits.Add64(r[2], 13281191951274694749, carry)
|
||||
r[3], _ = bits.Add64(r[3], 3486998266802970665, carry)
|
||||
|
||||
}
|
||||
|
||||
// r = r - s
|
||||
r[0], borrow = bits.Sub64(r[0], s[0], 0)
|
||||
r[1], borrow = bits.Sub64(r[1], s[1], borrow)
|
||||
r[2], borrow = bits.Sub64(r[2], s[2], borrow)
|
||||
r[3], _ = bits.Sub64(r[3], s[3], borrow)
|
||||
|
||||
}
|
||||
uIsOne = (u[0] == 1) && (u[3]|u[2]|u[1]) == 0
|
||||
vIsOne = (v[0] == 1) && (v[3]|v[2]|v[1]) == 0
|
||||
}
|
||||
|
||||
if uIsOne {
|
||||
z.Set(&r)
|
||||
} else {
|
||||
z.Set(&s)
|
||||
}
|
||||
|
||||
return z
|
||||
}
|
||||
|
||||
// SetRandom sets z to a random element < q
|
||||
func (z *Element) SetRandom() *Element {
|
||||
bytes := make([]byte, 32)
|
||||
io.ReadFull(rand.Reader, bytes)
|
||||
z[0] = binary.BigEndian.Uint64(bytes[0:8])
|
||||
z[1] = binary.BigEndian.Uint64(bytes[8:16])
|
||||
z[2] = binary.BigEndian.Uint64(bytes[16:24])
|
||||
z[3] = binary.BigEndian.Uint64(bytes[24:32])
|
||||
z[3] %= 3486998266802970665
|
||||
|
||||
// if z > q --> z -= q
|
||||
if !(z[3] < 3486998266802970665 || (z[3] == 3486998266802970665 && (z[2] < 13281191951274694749 || (z[2] == 13281191951274694749 && (z[1] < 2896914383306846353 || (z[1] == 2896914383306846353 && (z[0] < 4891460686036598785))))))) {
|
||||
var b uint64
|
||||
z[0], b = bits.Sub64(z[0], 4891460686036598785, 0)
|
||||
z[1], b = bits.Sub64(z[1], 2896914383306846353, b)
|
||||
z[2], b = bits.Sub64(z[2], 13281191951274694749, b)
|
||||
z[3], _ = bits.Sub64(z[3], 3486998266802970665, b)
|
||||
}
|
||||
|
||||
return z
|
||||
}
|
||||
|
||||
// Add z = x + y mod q
|
||||
func (z *Element) Add(x, y *Element) *Element {
|
||||
var carry uint64
|
||||
|
||||
z[0], carry = bits.Add64(x[0], y[0], 0)
|
||||
z[1], carry = bits.Add64(x[1], y[1], carry)
|
||||
z[2], carry = bits.Add64(x[2], y[2], carry)
|
||||
z[3], _ = bits.Add64(x[3], y[3], carry)
|
||||
|
||||
// if z > q --> z -= q
|
||||
if !(z[3] < 3486998266802970665 || (z[3] == 3486998266802970665 && (z[2] < 13281191951274694749 || (z[2] == 13281191951274694749 && (z[1] < 2896914383306846353 || (z[1] == 2896914383306846353 && (z[0] < 4891460686036598785))))))) {
|
||||
var b uint64
|
||||
z[0], b = bits.Sub64(z[0], 4891460686036598785, 0)
|
||||
z[1], b = bits.Sub64(z[1], 2896914383306846353, b)
|
||||
z[2], b = bits.Sub64(z[2], 13281191951274694749, b)
|
||||
z[3], _ = bits.Sub64(z[3], 3486998266802970665, b)
|
||||
}
|
||||
return z
|
||||
}
|
||||
|
||||
// AddAssign z = z + x mod q
|
||||
func (z *Element) AddAssign(x *Element) *Element {
|
||||
var carry uint64
|
||||
|
||||
z[0], carry = bits.Add64(z[0], x[0], 0)
|
||||
z[1], carry = bits.Add64(z[1], x[1], carry)
|
||||
z[2], carry = bits.Add64(z[2], x[2], carry)
|
||||
z[3], _ = bits.Add64(z[3], x[3], carry)
|
||||
|
||||
// if z > q --> z -= q
|
||||
if !(z[3] < 3486998266802970665 || (z[3] == 3486998266802970665 && (z[2] < 13281191951274694749 || (z[2] == 13281191951274694749 && (z[1] < 2896914383306846353 || (z[1] == 2896914383306846353 && (z[0] < 4891460686036598785))))))) {
|
||||
var b uint64
|
||||
z[0], b = bits.Sub64(z[0], 4891460686036598785, 0)
|
||||
z[1], b = bits.Sub64(z[1], 2896914383306846353, b)
|
||||
z[2], b = bits.Sub64(z[2], 13281191951274694749, b)
|
||||
z[3], _ = bits.Sub64(z[3], 3486998266802970665, b)
|
||||
}
|
||||
return z
|
||||
}
|
||||
|
||||
// Double z = x + x mod q, aka Lsh 1
|
||||
func (z *Element) Double(x *Element) *Element {
|
||||
var carry uint64
|
||||
|
||||
z[0], carry = bits.Add64(x[0], x[0], 0)
|
||||
z[1], carry = bits.Add64(x[1], x[1], carry)
|
||||
z[2], carry = bits.Add64(x[2], x[2], carry)
|
||||
z[3], _ = bits.Add64(x[3], x[3], carry)
|
||||
|
||||
// if z > q --> z -= q
|
||||
if !(z[3] < 3486998266802970665 || (z[3] == 3486998266802970665 && (z[2] < 13281191951274694749 || (z[2] == 13281191951274694749 && (z[1] < 2896914383306846353 || (z[1] == 2896914383306846353 && (z[0] < 4891460686036598785))))))) {
|
||||
var b uint64
|
||||
z[0], b = bits.Sub64(z[0], 4891460686036598785, 0)
|
||||
z[1], b = bits.Sub64(z[1], 2896914383306846353, b)
|
||||
z[2], b = bits.Sub64(z[2], 13281191951274694749, b)
|
||||
z[3], _ = bits.Sub64(z[3], 3486998266802970665, b)
|
||||
}
|
||||
return z
|
||||
}
|
||||
|
||||
// Sub z = x - y mod q
|
||||
func (z *Element) Sub(x, y *Element) *Element {
|
||||
var b uint64
|
||||
z[0], b = bits.Sub64(x[0], y[0], 0)
|
||||
z[1], b = bits.Sub64(x[1], y[1], b)
|
||||
z[2], b = bits.Sub64(x[2], y[2], b)
|
||||
z[3], b = bits.Sub64(x[3], y[3], b)
|
||||
if b != 0 {
|
||||
var c uint64
|
||||
z[0], c = bits.Add64(z[0], 4891460686036598785, 0)
|
||||
z[1], c = bits.Add64(z[1], 2896914383306846353, c)
|
||||
z[2], c = bits.Add64(z[2], 13281191951274694749, c)
|
||||
z[3], _ = bits.Add64(z[3], 3486998266802970665, c)
|
||||
}
|
||||
return z
|
||||
}
|
||||
|
||||
// SubAssign z = z - x mod q
|
||||
func (z *Element) SubAssign(x *Element) *Element {
|
||||
var b uint64
|
||||
z[0], b = bits.Sub64(z[0], x[0], 0)
|
||||
z[1], b = bits.Sub64(z[1], x[1], b)
|
||||
z[2], b = bits.Sub64(z[2], x[2], b)
|
||||
z[3], b = bits.Sub64(z[3], x[3], b)
|
||||
if b != 0 {
|
||||
var c uint64
|
||||
z[0], c = bits.Add64(z[0], 4891460686036598785, 0)
|
||||
z[1], c = bits.Add64(z[1], 2896914383306846353, c)
|
||||
z[2], c = bits.Add64(z[2], 13281191951274694749, c)
|
||||
z[3], _ = bits.Add64(z[3], 3486998266802970665, c)
|
||||
}
|
||||
return z
|
||||
}
|
||||
|
||||
// Exp z = x^e mod q
|
||||
func (z *Element) Exp(x Element, e uint64) *Element {
|
||||
if e == 0 {
|
||||
return z.SetOne()
|
||||
}
|
||||
|
||||
z.Set(&x)
|
||||
|
||||
l := bits.Len64(e) - 2
|
||||
for i := l; i >= 0; i-- {
|
||||
z.Square(z)
|
||||
if e&(1<<uint(i)) != 0 {
|
||||
z.MulAssign(&x)
|
||||
}
|
||||
}
|
||||
return z
|
||||
}
|
||||
|
||||
// FromMont converts z in place (i.e. mutates) from Montgomery to regular representation
|
||||
// sets and returns z = z * 1
|
||||
func (z *Element) FromMont() *Element {
|
||||
|
||||
// the following lines implement z = z * 1
|
||||
// with a modified CIOS montgomery multiplication
|
||||
{
|
||||
// m = z[0]n'[0] mod W
|
||||
m := z[0] * 14042775128853446655
|
||||
C := madd0(m, 4891460686036598785, z[0])
|
||||
C, z[0] = madd2(m, 2896914383306846353, z[1], C)
|
||||
C, z[1] = madd2(m, 13281191951274694749, z[2], C)
|
||||
C, z[2] = madd2(m, 3486998266802970665, z[3], C)
|
||||
z[3] = C
|
||||
}
|
||||
{
|
||||
// m = z[0]n'[0] mod W
|
||||
m := z[0] * 14042775128853446655
|
||||
C := madd0(m, 4891460686036598785, z[0])
|
||||
C, z[0] = madd2(m, 2896914383306846353, z[1], C)
|
||||
C, z[1] = madd2(m, 13281191951274694749, z[2], C)
|
||||
C, z[2] = madd2(m, 3486998266802970665, z[3], C)
|
||||
z[3] = C
|
||||
}
|
||||
{
|
||||
// m = z[0]n'[0] mod W
|
||||
m := z[0] * 14042775128853446655
|
||||
C := madd0(m, 4891460686036598785, z[0])
|
||||
C, z[0] = madd2(m, 2896914383306846353, z[1], C)
|
||||
C, z[1] = madd2(m, 13281191951274694749, z[2], C)
|
||||
C, z[2] = madd2(m, 3486998266802970665, z[3], C)
|
||||
z[3] = C
|
||||
}
|
||||
{
|
||||
// m = z[0]n'[0] mod W
|
||||
m := z[0] * 14042775128853446655
|
||||
C := madd0(m, 4891460686036598785, z[0])
|
||||
C, z[0] = madd2(m, 2896914383306846353, z[1], C)
|
||||
C, z[1] = madd2(m, 13281191951274694749, z[2], C)
|
||||
C, z[2] = madd2(m, 3486998266802970665, z[3], C)
|
||||
z[3] = C
|
||||
}
|
||||
|
||||
// if z > q --> z -= q
|
||||
if !(z[3] < 3486998266802970665 || (z[3] == 3486998266802970665 && (z[2] < 13281191951274694749 || (z[2] == 13281191951274694749 && (z[1] < 2896914383306846353 || (z[1] == 2896914383306846353 && (z[0] < 4891460686036598785))))))) {
|
||||
var b uint64
|
||||
z[0], b = bits.Sub64(z[0], 4891460686036598785, 0)
|
||||
z[1], b = bits.Sub64(z[1], 2896914383306846353, b)
|
||||
z[2], b = bits.Sub64(z[2], 13281191951274694749, b)
|
||||
z[3], _ = bits.Sub64(z[3], 3486998266802970665, b)
|
||||
}
|
||||
return z
|
||||
}
|
||||
|
||||
// ToMont converts z to Montgomery form
|
||||
// sets and returns z = z * r^2
|
||||
func (z *Element) ToMont() *Element {
|
||||
var rSquare = Element{
|
||||
1997599621687373223,
|
||||
6052339484930628067,
|
||||
10108755138030829701,
|
||||
150537098327114917,
|
||||
}
|
||||
return z.MulAssign(&rSquare)
|
||||
}
|
||||
|
||||
// ToRegular returns z in regular form (doesn't mutate z)
|
||||
func (z Element) ToRegular() Element {
|
||||
return *z.FromMont()
|
||||
}
|
||||
|
||||
// String returns the string form of an Element in Montgomery form
|
||||
func (z *Element) String() string {
|
||||
var _z big.Int
|
||||
return z.ToBigIntRegular(&_z).String()
|
||||
}
|
||||
|
||||
// ToBigInt returns z as a big.Int in Montgomery form
|
||||
func (z *Element) ToBigInt(res *big.Int) *big.Int {
|
||||
bits := (*[4]big.Word)(unsafe.Pointer(z))
|
||||
return res.SetBits(bits[:])
|
||||
}
|
||||
|
||||
// ToBigIntRegular returns z as a big.Int in regular form
|
||||
func (z Element) ToBigIntRegular(res *big.Int) *big.Int {
|
||||
z.FromMont()
|
||||
bits := (*[4]big.Word)(unsafe.Pointer(&z))
|
||||
return res.SetBits(bits[:])
|
||||
}
|
||||
|
||||
// SetBigInt sets z to v (regular form) and returns z in Montgomery form
|
||||
func (z *Element) SetBigInt(v *big.Int) *Element {
|
||||
z.SetZero()
|
||||
|
||||
zero := big.NewInt(0)
|
||||
q := elementModulusBigInt()
|
||||
|
||||
// copy input
|
||||
vv := new(big.Int).Set(v)
|
||||
|
||||
// while v < 0, v+=q
|
||||
for vv.Cmp(zero) == -1 {
|
||||
vv.Add(vv, q)
|
||||
}
|
||||
// while v > q, v-=q
|
||||
for vv.Cmp(q) == 1 {
|
||||
vv.Sub(vv, q)
|
||||
}
|
||||
// if v == q, return 0
|
||||
if vv.Cmp(q) == 0 {
|
||||
return z
|
||||
}
|
||||
// v should
|
||||
vBits := vv.Bits()
|
||||
for i := 0; i < len(vBits); i++ {
|
||||
z[i] = uint64(vBits[i])
|
||||
}
|
||||
return z.ToMont()
|
||||
}
|
||||
|
||||
// SetString creates a big.Int with s (in base 10) and calls SetBigInt on z
|
||||
func (z *Element) SetString(s string) *Element {
|
||||
x, ok := new(big.Int).SetString(s, 10)
|
||||
if !ok {
|
||||
panic("Element.SetString failed -> can't parse number in base10 into a big.Int")
|
||||
}
|
||||
return z.SetBigInt(x)
|
||||
}
|
||||
|
||||
// Mul z = x * y mod q
|
||||
func (z *Element) Mul(x, y *Element) *Element {
|
||||
|
||||
var t [4]uint64
|
||||
var c [3]uint64
|
||||
{
|
||||
// round 0
|
||||
v := x[0]
|
||||
c[1], c[0] = bits.Mul64(v, y[0])
|
||||
m := c[0] * 14042775128853446655
|
||||
c[2] = madd0(m, 4891460686036598785, c[0])
|
||||
c[1], c[0] = madd1(v, y[1], c[1])
|
||||
c[2], t[0] = madd2(m, 2896914383306846353, c[2], c[0])
|
||||
c[1], c[0] = madd1(v, y[2], c[1])
|
||||
c[2], t[1] = madd2(m, 13281191951274694749, c[2], c[0])
|
||||
c[1], c[0] = madd1(v, y[3], c[1])
|
||||
t[3], t[2] = madd3(m, 3486998266802970665, c[0], c[2], c[1])
|
||||
}
|
||||
{
|
||||
// round 1
|
||||
v := x[1]
|
||||
c[1], c[0] = madd1(v, y[0], t[0])
|
||||
m := c[0] * 14042775128853446655
|
||||
c[2] = madd0(m, 4891460686036598785, c[0])
|
||||
c[1], c[0] = madd2(v, y[1], c[1], t[1])
|
||||
c[2], t[0] = madd2(m, 2896914383306846353, c[2], c[0])
|
||||
c[1], c[0] = madd2(v, y[2], c[1], t[2])
|
||||
c[2], t[1] = madd2(m, 13281191951274694749, c[2], c[0])
|
||||
c[1], c[0] = madd2(v, y[3], c[1], t[3])
|
||||
t[3], t[2] = madd3(m, 3486998266802970665, c[0], c[2], c[1])
|
||||
}
|
||||
{
|
||||
// round 2
|
||||
v := x[2]
|
||||
c[1], c[0] = madd1(v, y[0], t[0])
|
||||
m := c[0] * 14042775128853446655
|
||||
c[2] = madd0(m, 4891460686036598785, c[0])
|
||||
c[1], c[0] = madd2(v, y[1], c[1], t[1])
|
||||
c[2], t[0] = madd2(m, 2896914383306846353, c[2], c[0])
|
||||
c[1], c[0] = madd2(v, y[2], c[1], t[2])
|
||||
c[2], t[1] = madd2(m, 13281191951274694749, c[2], c[0])
|
||||
c[1], c[0] = madd2(v, y[3], c[1], t[3])
|
||||
t[3], t[2] = madd3(m, 3486998266802970665, c[0], c[2], c[1])
|
||||
}
|
||||
{
|
||||
// round 3
|
||||
v := x[3]
|
||||
c[1], c[0] = madd1(v, y[0], t[0])
|
||||
m := c[0] * 14042775128853446655
|
||||
c[2] = madd0(m, 4891460686036598785, c[0])
|
||||
c[1], c[0] = madd2(v, y[1], c[1], t[1])
|
||||
c[2], z[0] = madd2(m, 2896914383306846353, c[2], c[0])
|
||||
c[1], c[0] = madd2(v, y[2], c[1], t[2])
|
||||
c[2], z[1] = madd2(m, 13281191951274694749, c[2], c[0])
|
||||
c[1], c[0] = madd2(v, y[3], c[1], t[3])
|
||||
z[3], z[2] = madd3(m, 3486998266802970665, c[0], c[2], c[1])
|
||||
}
|
||||
|
||||
// if z > q --> z -= q
|
||||
if !(z[3] < 3486998266802970665 || (z[3] == 3486998266802970665 && (z[2] < 13281191951274694749 || (z[2] == 13281191951274694749 && (z[1] < 2896914383306846353 || (z[1] == 2896914383306846353 && (z[0] < 4891460686036598785))))))) {
|
||||
var b uint64
|
||||
z[0], b = bits.Sub64(z[0], 4891460686036598785, 0)
|
||||
z[1], b = bits.Sub64(z[1], 2896914383306846353, b)
|
||||
z[2], b = bits.Sub64(z[2], 13281191951274694749, b)
|
||||
z[3], _ = bits.Sub64(z[3], 3486998266802970665, b)
|
||||
}
|
||||
return z
|
||||
}
|
||||
|
||||
// MulAssign z = z * x mod q
|
||||
func (z *Element) MulAssign(x *Element) *Element {
|
||||
|
||||
var t [4]uint64
|
||||
var c [3]uint64
|
||||
{
|
||||
// round 0
|
||||
v := z[0]
|
||||
c[1], c[0] = bits.Mul64(v, x[0])
|
||||
m := c[0] * 14042775128853446655
|
||||
c[2] = madd0(m, 4891460686036598785, c[0])
|
||||
c[1], c[0] = madd1(v, x[1], c[1])
|
||||
c[2], t[0] = madd2(m, 2896914383306846353, c[2], c[0])
|
||||
c[1], c[0] = madd1(v, x[2], c[1])
|
||||
c[2], t[1] = madd2(m, 13281191951274694749, c[2], c[0])
|
||||
c[1], c[0] = madd1(v, x[3], c[1])
|
||||
t[3], t[2] = madd3(m, 3486998266802970665, c[0], c[2], c[1])
|
||||
}
|
||||
{
|
||||
// round 1
|
||||
v := z[1]
|
||||
c[1], c[0] = madd1(v, x[0], t[0])
|
||||
m := c[0] * 14042775128853446655
|
||||
c[2] = madd0(m, 4891460686036598785, c[0])
|
||||
c[1], c[0] = madd2(v, x[1], c[1], t[1])
|
||||
c[2], t[0] = madd2(m, 2896914383306846353, c[2], c[0])
|
||||
c[1], c[0] = madd2(v, x[2], c[1], t[2])
|
||||
c[2], t[1] = madd2(m, 13281191951274694749, c[2], c[0])
|
||||
c[1], c[0] = madd2(v, x[3], c[1], t[3])
|
||||
t[3], t[2] = madd3(m, 3486998266802970665, c[0], c[2], c[1])
|
||||
}
|
||||
{
|
||||
// round 2
|
||||
v := z[2]
|
||||
c[1], c[0] = madd1(v, x[0], t[0])
|
||||
m := c[0] * 14042775128853446655
|
||||
c[2] = madd0(m, 4891460686036598785, c[0])
|
||||
c[1], c[0] = madd2(v, x[1], c[1], t[1])
|
||||
c[2], t[0] = madd2(m, 2896914383306846353, c[2], c[0])
|
||||
c[1], c[0] = madd2(v, x[2], c[1], t[2])
|
||||
c[2], t[1] = madd2(m, 13281191951274694749, c[2], c[0])
|
||||
c[1], c[0] = madd2(v, x[3], c[1], t[3])
|
||||
t[3], t[2] = madd3(m, 3486998266802970665, c[0], c[2], c[1])
|
||||
}
|
||||
{
|
||||
// round 3
|
||||
v := z[3]
|
||||
c[1], c[0] = madd1(v, x[0], t[0])
|
||||
m := c[0] * 14042775128853446655
|
||||
c[2] = madd0(m, 4891460686036598785, c[0])
|
||||
c[1], c[0] = madd2(v, x[1], c[1], t[1])
|
||||
c[2], z[0] = madd2(m, 2896914383306846353, c[2], c[0])
|
||||
c[1], c[0] = madd2(v, x[2], c[1], t[2])
|
||||
c[2], z[1] = madd2(m, 13281191951274694749, c[2], c[0])
|
||||
c[1], c[0] = madd2(v, x[3], c[1], t[3])
|
||||
z[3], z[2] = madd3(m, 3486998266802970665, c[0], c[2], c[1])
|
||||
}
|
||||
|
||||
// if z > q --> z -= q
|
||||
if !(z[3] < 3486998266802970665 || (z[3] == 3486998266802970665 && (z[2] < 13281191951274694749 || (z[2] == 13281191951274694749 && (z[1] < 2896914383306846353 || (z[1] == 2896914383306846353 && (z[0] < 4891460686036598785))))))) {
|
||||
var b uint64
|
||||
z[0], b = bits.Sub64(z[0], 4891460686036598785, 0)
|
||||
z[1], b = bits.Sub64(z[1], 2896914383306846353, b)
|
||||
z[2], b = bits.Sub64(z[2], 13281191951274694749, b)
|
||||
z[3], _ = bits.Sub64(z[3], 3486998266802970665, b)
|
||||
}
|
||||
return z
|
||||
}
|
||||
|
||||
// Square z = x * x mod q
|
||||
func (z *Element) Square(x *Element) *Element {
|
||||
|
||||
var p [4]uint64
|
||||
|
||||
var u, v uint64
|
||||
{
|
||||
// round 0
|
||||
u, p[0] = bits.Mul64(x[0], x[0])
|
||||
m := p[0] * 14042775128853446655
|
||||
C := madd0(m, 4891460686036598785, p[0])
|
||||
var t uint64
|
||||
t, u, v = madd1sb(x[0], x[1], u)
|
||||
C, p[0] = madd2(m, 2896914383306846353, v, C)
|
||||
t, u, v = madd1s(x[0], x[2], t, u)
|
||||
C, p[1] = madd2(m, 13281191951274694749, v, C)
|
||||
_, u, v = madd1s(x[0], x[3], t, u)
|
||||
p[3], p[2] = madd3(m, 3486998266802970665, v, C, u)
|
||||
}
|
||||
{
|
||||
// round 1
|
||||
m := p[0] * 14042775128853446655
|
||||
C := madd0(m, 4891460686036598785, p[0])
|
||||
u, v = madd1(x[1], x[1], p[1])
|
||||
C, p[0] = madd2(m, 2896914383306846353, v, C)
|
||||
var t uint64
|
||||
t, u, v = madd2sb(x[1], x[2], p[2], u)
|
||||
C, p[1] = madd2(m, 13281191951274694749, v, C)
|
||||
_, u, v = madd2s(x[1], x[3], p[3], t, u)
|
||||
p[3], p[2] = madd3(m, 3486998266802970665, v, C, u)
|
||||
}
|
||||
{
|
||||
// round 2
|
||||
m := p[0] * 14042775128853446655
|
||||
C := madd0(m, 4891460686036598785, p[0])
|
||||
C, p[0] = madd2(m, 2896914383306846353, p[1], C)
|
||||
u, v = madd1(x[2], x[2], p[2])
|
||||
C, p[1] = madd2(m, 13281191951274694749, v, C)
|
||||
_, u, v = madd2sb(x[2], x[3], p[3], u)
|
||||
p[3], p[2] = madd3(m, 3486998266802970665, v, C, u)
|
||||
}
|
||||
{
|
||||
// round 3
|
||||
m := p[0] * 14042775128853446655
|
||||
C := madd0(m, 4891460686036598785, p[0])
|
||||
C, z[0] = madd2(m, 2896914383306846353, p[1], C)
|
||||
C, z[1] = madd2(m, 13281191951274694749, p[2], C)
|
||||
u, v = madd1(x[3], x[3], p[3])
|
||||
z[3], z[2] = madd3(m, 3486998266802970665, v, C, u)
|
||||
}
|
||||
|
||||
// if z > q --> z -= q
|
||||
if !(z[3] < 3486998266802970665 || (z[3] == 3486998266802970665 && (z[2] < 13281191951274694749 || (z[2] == 13281191951274694749 && (z[1] < 2896914383306846353 || (z[1] == 2896914383306846353 && (z[0] < 4891460686036598785))))))) {
|
||||
var b uint64
|
||||
z[0], b = bits.Sub64(z[0], 4891460686036598785, 0)
|
||||
z[1], b = bits.Sub64(z[1], 2896914383306846353, b)
|
||||
z[2], b = bits.Sub64(z[2], 13281191951274694749, b)
|
||||
z[3], _ = bits.Sub64(z[3], 3486998266802970665, b)
|
||||
}
|
||||
return z
|
||||
}
|
||||
234
ff/element_test.go
Normal file
234
ff/element_test.go
Normal file
@@ -0,0 +1,234 @@
|
||||
// Code generated by goff DO NOT EDIT
|
||||
package ff
|
||||
|
||||
import (
|
||||
"crypto/rand"
|
||||
"math/big"
|
||||
mrand "math/rand"
|
||||
"testing"
|
||||
)
|
||||
|
||||
func TestELEMENTCorrectnessAgainstBigInt(t *testing.T) {
|
||||
modulus, _ := new(big.Int).SetString("21888242871839275222246405745257275088548364400416034343698204186575808495617", 10)
|
||||
cmpEandB := func(e *Element, b *big.Int, name string) {
|
||||
var _e big.Int
|
||||
if e.FromMont().ToBigInt(&_e).Cmp(b) != 0 {
|
||||
t.Fatal(name, "failed")
|
||||
}
|
||||
}
|
||||
var modulusMinusOne, one big.Int
|
||||
one.SetUint64(1)
|
||||
|
||||
modulusMinusOne.Sub(modulus, &one)
|
||||
|
||||
for i := 0; i < 1000; i++ {
|
||||
|
||||
// sample 2 random big int
|
||||
b1, _ := rand.Int(rand.Reader, modulus)
|
||||
b2, _ := rand.Int(rand.Reader, modulus)
|
||||
rExp := mrand.Uint64()
|
||||
|
||||
// adding edge cases
|
||||
// TODO need more edge cases
|
||||
switch i {
|
||||
case 0:
|
||||
rExp = 0
|
||||
b1.SetUint64(0)
|
||||
case 1:
|
||||
b2.SetUint64(0)
|
||||
case 2:
|
||||
b1.SetUint64(0)
|
||||
b2.SetUint64(0)
|
||||
case 3:
|
||||
rExp = 0
|
||||
case 4:
|
||||
rExp = 1
|
||||
case 5:
|
||||
rExp = ^uint64(0) // max uint
|
||||
case 6:
|
||||
rExp = 2
|
||||
b1.Set(&modulusMinusOne)
|
||||
case 7:
|
||||
b2.Set(&modulusMinusOne)
|
||||
case 8:
|
||||
b1.Set(&modulusMinusOne)
|
||||
b2.Set(&modulusMinusOne)
|
||||
}
|
||||
|
||||
rbExp := new(big.Int).SetUint64(rExp)
|
||||
|
||||
var bMul, bAdd, bSub, bDiv, bNeg, bLsh, bInv, bExp, bSquare big.Int
|
||||
|
||||
// e1 = mont(b1), e2 = mont(b2)
|
||||
var e1, e2, eMul, eAdd, eSub, eDiv, eNeg, eLsh, eInv, eExp, eSquare, eMulAssign, eSubAssign, eAddAssign Element
|
||||
e1.SetBigInt(b1)
|
||||
e2.SetBigInt(b2)
|
||||
|
||||
// (e1*e2).FromMont() === b1*b2 mod q ... etc
|
||||
eSquare.Square(&e1)
|
||||
eMul.Mul(&e1, &e2)
|
||||
eMulAssign.Set(&e1)
|
||||
eMulAssign.MulAssign(&e2)
|
||||
eAdd.Add(&e1, &e2)
|
||||
eAddAssign.Set(&e1)
|
||||
eAddAssign.AddAssign(&e2)
|
||||
eSub.Sub(&e1, &e2)
|
||||
eSubAssign.Set(&e1)
|
||||
eSubAssign.SubAssign(&e2)
|
||||
eDiv.Div(&e1, &e2)
|
||||
eNeg.Neg(&e1)
|
||||
eInv.Inverse(&e1)
|
||||
eExp.Exp(e1, rExp)
|
||||
eLsh.Double(&e1)
|
||||
|
||||
// same operations with big int
|
||||
bAdd.Add(b1, b2).Mod(&bAdd, modulus)
|
||||
bMul.Mul(b1, b2).Mod(&bMul, modulus)
|
||||
bSquare.Mul(b1, b1).Mod(&bSquare, modulus)
|
||||
bSub.Sub(b1, b2).Mod(&bSub, modulus)
|
||||
bDiv.ModInverse(b2, modulus)
|
||||
bDiv.Mul(&bDiv, b1).
|
||||
Mod(&bDiv, modulus)
|
||||
bNeg.Neg(b1).Mod(&bNeg, modulus)
|
||||
|
||||
bInv.ModInverse(b1, modulus)
|
||||
bExp.Exp(b1, rbExp, modulus)
|
||||
bLsh.Lsh(b1, 1).Mod(&bLsh, modulus)
|
||||
|
||||
cmpEandB(&eSquare, &bSquare, "Square")
|
||||
cmpEandB(&eMul, &bMul, "Mul")
|
||||
cmpEandB(&eMulAssign, &bMul, "MulAssign")
|
||||
cmpEandB(&eAdd, &bAdd, "Add")
|
||||
cmpEandB(&eAddAssign, &bAdd, "AddAssign")
|
||||
cmpEandB(&eSub, &bSub, "Sub")
|
||||
cmpEandB(&eSubAssign, &bSub, "SubAssign")
|
||||
cmpEandB(&eDiv, &bDiv, "Div")
|
||||
cmpEandB(&eNeg, &bNeg, "Neg")
|
||||
cmpEandB(&eInv, &bInv, "Inv")
|
||||
cmpEandB(&eExp, &bExp, "Exp")
|
||||
cmpEandB(&eLsh, &bLsh, "Lsh")
|
||||
}
|
||||
}
|
||||
|
||||
func TestELEMENTIsRandom(t *testing.T) {
|
||||
for i := 0; i < 1000; i++ {
|
||||
var x, y Element
|
||||
x.SetRandom()
|
||||
y.SetRandom()
|
||||
if x.Equal(&y) {
|
||||
t.Fatal("2 random numbers are unlikely to be equal")
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// -------------------------------------------------------------------------------------------------
|
||||
// benchmarks
|
||||
// most benchmarks are rudimentary and should sample a large number of random inputs
|
||||
// or be run multiple times to ensure it didn't measure the fastest path of the function
|
||||
// TODO: clean up and push benchmarking branch
|
||||
|
||||
var benchResElement Element
|
||||
|
||||
func BenchmarkInverseELEMENT(b *testing.B) {
|
||||
var x Element
|
||||
x.SetRandom()
|
||||
benchResElement.SetRandom()
|
||||
b.ResetTimer()
|
||||
|
||||
for i := 0; i < b.N; i++ {
|
||||
benchResElement.Inverse(&x)
|
||||
}
|
||||
|
||||
}
|
||||
func BenchmarkExpELEMENT(b *testing.B) {
|
||||
var x Element
|
||||
x.SetRandom()
|
||||
benchResElement.SetRandom()
|
||||
b.ResetTimer()
|
||||
for i := 0; i < b.N; i++ {
|
||||
benchResElement.Exp(x, mrand.Uint64())
|
||||
}
|
||||
}
|
||||
|
||||
func BenchmarkDoubleELEMENT(b *testing.B) {
|
||||
benchResElement.SetRandom()
|
||||
b.ResetTimer()
|
||||
for i := 0; i < b.N; i++ {
|
||||
benchResElement.Double(&benchResElement)
|
||||
}
|
||||
}
|
||||
|
||||
func BenchmarkAddELEMENT(b *testing.B) {
|
||||
var x Element
|
||||
x.SetRandom()
|
||||
benchResElement.SetRandom()
|
||||
b.ResetTimer()
|
||||
for i := 0; i < b.N; i++ {
|
||||
benchResElement.Add(&x, &benchResElement)
|
||||
}
|
||||
}
|
||||
|
||||
func BenchmarkSubELEMENT(b *testing.B) {
|
||||
var x Element
|
||||
x.SetRandom()
|
||||
benchResElement.SetRandom()
|
||||
b.ResetTimer()
|
||||
for i := 0; i < b.N; i++ {
|
||||
benchResElement.Sub(&x, &benchResElement)
|
||||
}
|
||||
}
|
||||
|
||||
func BenchmarkNegELEMENT(b *testing.B) {
|
||||
benchResElement.SetRandom()
|
||||
b.ResetTimer()
|
||||
for i := 0; i < b.N; i++ {
|
||||
benchResElement.Neg(&benchResElement)
|
||||
}
|
||||
}
|
||||
|
||||
func BenchmarkDivELEMENT(b *testing.B) {
|
||||
var x Element
|
||||
x.SetRandom()
|
||||
benchResElement.SetRandom()
|
||||
b.ResetTimer()
|
||||
for i := 0; i < b.N; i++ {
|
||||
benchResElement.Div(&x, &benchResElement)
|
||||
}
|
||||
}
|
||||
|
||||
func BenchmarkFromMontELEMENT(b *testing.B) {
|
||||
benchResElement.SetRandom()
|
||||
b.ResetTimer()
|
||||
for i := 0; i < b.N; i++ {
|
||||
benchResElement.FromMont()
|
||||
}
|
||||
}
|
||||
|
||||
func BenchmarkToMontELEMENT(b *testing.B) {
|
||||
benchResElement.SetRandom()
|
||||
b.ResetTimer()
|
||||
for i := 0; i < b.N; i++ {
|
||||
benchResElement.ToMont()
|
||||
}
|
||||
}
|
||||
func BenchmarkSquareELEMENT(b *testing.B) {
|
||||
benchResElement.SetRandom()
|
||||
b.ResetTimer()
|
||||
for i := 0; i < b.N; i++ {
|
||||
benchResElement.Square(&benchResElement)
|
||||
}
|
||||
}
|
||||
|
||||
func BenchmarkMulAssignELEMENT(b *testing.B) {
|
||||
x := Element{
|
||||
1997599621687373223,
|
||||
6052339484930628067,
|
||||
10108755138030829701,
|
||||
150537098327114917,
|
||||
}
|
||||
benchResElement.SetOne()
|
||||
b.ResetTimer()
|
||||
for i := 0; i < b.N; i++ {
|
||||
benchResElement.MulAssign(&x)
|
||||
}
|
||||
}
|
||||
Reference in New Issue
Block a user