Golden poseidon hash implementationfix/bbjj-err
@ -0,0 +1,30 @@ |
|||
// Copyright 2020 ConsenSys Software Inc.
|
|||
//
|
|||
// Licensed under the Apache License, Version 2.0 (the "License");
|
|||
// you may not use this file except in compliance with the License.
|
|||
// You may obtain a copy of the License at
|
|||
//
|
|||
// http://www.apache.org/licenses/LICENSE-2.0
|
|||
//
|
|||
// Unless required by applicable law or agreed to in writing, software
|
|||
// distributed under the License is distributed on an "AS IS" BASIS,
|
|||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|||
// See the License for the specific language governing permissions and
|
|||
// limitations under the License.
|
|||
|
|||
// Code generated by consensys/gnark-crypto DO NOT EDIT
|
|||
|
|||
package ffg |
|||
|
|||
import ( |
|||
"math/bits" |
|||
) |
|||
|
|||
// madd0 hi = a*b + c (discards lo bits)
|
|||
func madd0(a, b, c uint64) (hi uint64) { |
|||
var carry, lo uint64 |
|||
hi, lo = bits.Mul64(a, b) |
|||
_, carry = bits.Add64(lo, c, 0) |
|||
hi, _ = bits.Add64(hi, 0, carry) |
|||
return |
|||
} |
@ -0,0 +1,24 @@ |
|||
//go:build !noadx
|
|||
// +build !noadx
|
|||
|
|||
// Copyright 2020 ConsenSys Software Inc.
|
|||
//
|
|||
// Licensed under the Apache License, Version 2.0 (the "License");
|
|||
// you may not use this file except in compliance with the License.
|
|||
// You may obtain a copy of the License at
|
|||
//
|
|||
// http://www.apache.org/licenses/LICENSE-2.0
|
|||
//
|
|||
// Unless required by applicable law or agreed to in writing, software
|
|||
// distributed under the License is distributed on an "AS IS" BASIS,
|
|||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|||
// See the License for the specific language governing permissions and
|
|||
// limitations under the License.
|
|||
|
|||
// Code generated by consensys/gnark-crypto DO NOT EDIT
|
|||
|
|||
package ffg |
|||
|
|||
import "golang.org/x/sys/cpu" |
|||
|
|||
var supportAdx = cpu.X86.HasADX && cpu.X86.HasBMI2 |
@ -0,0 +1,25 @@ |
|||
//go:build noadx
|
|||
// +build noadx
|
|||
|
|||
// Copyright 2020 ConsenSys Software Inc.
|
|||
//
|
|||
// Licensed under the Apache License, Version 2.0 (the "License");
|
|||
// you may not use this file except in compliance with the License.
|
|||
// You may obtain a copy of the License at
|
|||
//
|
|||
// http://www.apache.org/licenses/LICENSE-2.0
|
|||
//
|
|||
// Unless required by applicable law or agreed to in writing, software
|
|||
// distributed under the License is distributed on an "AS IS" BASIS,
|
|||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|||
// See the License for the specific language governing permissions and
|
|||
// limitations under the License.
|
|||
|
|||
// Code generated by consensys/gnark-crypto DO NOT EDIT
|
|||
|
|||
package ffg |
|||
|
|||
// note: this is needed for test purposes, as dynamically changing supportAdx doesn't flag
|
|||
// certain errors (like fatal error: missing stackmap)
|
|||
// this ensures we test all asm path.
|
|||
var supportAdx = false |
@ -0,0 +1,43 @@ |
|||
// Copyright 2020 ConsenSys Software Inc.
|
|||
//
|
|||
// Licensed under the Apache License, Version 2.0 (the "License");
|
|||
// you may not use this file except in compliance with the License.
|
|||
// You may obtain a copy of the License at
|
|||
//
|
|||
// http://www.apache.org/licenses/LICENSE-2.0
|
|||
//
|
|||
// Unless required by applicable law or agreed to in writing, software
|
|||
// distributed under the License is distributed on an "AS IS" BASIS,
|
|||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|||
// See the License for the specific language governing permissions and
|
|||
// limitations under the License.
|
|||
|
|||
// Code generated by consensys/gnark-crypto DO NOT EDIT
|
|||
|
|||
// Package ffg contains field arithmetic operations for modulus = 0xffffff...000001.
|
|||
//
|
|||
// The API is similar to math/big (big.Int), but the operations are significantly faster (up to 20x for the modular multiplication on amd64, see also https://hackmd.io/@zkteam/modular_multiplication)
|
|||
//
|
|||
// The modulus is hardcoded in all the operations.
|
|||
//
|
|||
// Field elements are represented as an array, and assumed to be in Montgomery form in all methods:
|
|||
// type Element [1]uint64
|
|||
//
|
|||
// Example API signature
|
|||
// // Mul z = x * y mod q
|
|||
// func (z *Element) Mul(x, y *Element) *Element
|
|||
//
|
|||
// and can be used like so:
|
|||
// var a, b Element
|
|||
// a.SetUint64(2)
|
|||
// b.SetString("984896738")
|
|||
// a.Mul(a, b)
|
|||
// a.Sub(a, a)
|
|||
// .Add(a, b)
|
|||
// .Inv(a)
|
|||
// b.Exp(b, new(big.Int).SetUint64(42))
|
|||
//
|
|||
// Modulus
|
|||
// 0xffffffff00000001 // base 16
|
|||
// 18446744069414584321 // base 10
|
|||
package ffg |
@ -0,0 +1,759 @@ |
|||
// Copyright 2020 ConsenSys Software Inc.
|
|||
//
|
|||
// Licensed under the Apache License, Version 2.0 (the "License");
|
|||
// you may not use this file except in compliance with the License.
|
|||
// You may obtain a copy of the License at
|
|||
//
|
|||
// http://www.apache.org/licenses/LICENSE-2.0
|
|||
//
|
|||
// Unless required by applicable law or agreed to in writing, software
|
|||
// distributed under the License is distributed on an "AS IS" BASIS,
|
|||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|||
// See the License for the specific language governing permissions and
|
|||
// limitations under the License.
|
|||
|
|||
// Code generated by consensys/gnark-crypto DO NOT EDIT
|
|||
|
|||
package ffg |
|||
|
|||
// /!\ WARNING /!\
|
|||
// this code has not been audited and is provided as-is. In particular,
|
|||
// there is no security guarantees such as constant time implementation
|
|||
// or side-channel attack resistance
|
|||
// /!\ WARNING /!\
|
|||
|
|||
import ( |
|||
"crypto/rand" |
|||
"encoding/binary" |
|||
"errors" |
|||
"io" |
|||
"math/big" |
|||
"math/bits" |
|||
"reflect" |
|||
"strconv" |
|||
"sync" |
|||
) |
|||
|
|||
// Element represents a field element stored on 1 words (uint64)
|
|||
// Element are assumed to be in Montgomery form in all methods
|
|||
// field modulus q =
|
|||
//
|
|||
// 18446744069414584321
|
|||
type Element [1]uint64 |
|||
|
|||
// Limbs number of 64 bits words needed to represent Element
|
|||
const Limbs = 1 |
|||
|
|||
// Bits number bits needed to represent Element
|
|||
const Bits = 64 |
|||
|
|||
// Bytes number bytes needed to represent Element
|
|||
const Bytes = Limbs * 8 |
|||
|
|||
// field modulus stored as big.Int
|
|||
var _modulus big.Int |
|||
|
|||
// Modulus returns q as a big.Int
|
|||
// q =
|
|||
//
|
|||
// 18446744069414584321
|
|||
func Modulus() *big.Int { |
|||
return new(big.Int).Set(&_modulus) |
|||
} |
|||
|
|||
// q (modulus)
|
|||
var qElement = Element{ |
|||
18446744069414584321, |
|||
} |
|||
|
|||
// rSquare
|
|||
var rSquare = Element{ |
|||
18446744065119617025, |
|||
} |
|||
|
|||
var bigIntPool = sync.Pool{ |
|||
New: func() interface{} { |
|||
return new(big.Int) |
|||
}, |
|||
} |
|||
|
|||
func init() { |
|||
_modulus.SetString("18446744069414584321", 10) |
|||
} |
|||
|
|||
// NewElement returns a new Element
|
|||
func NewElement() *Element { |
|||
return &Element{} |
|||
} |
|||
|
|||
// NewElementFromUint64 returns a new Element from a uint64 value
|
|||
//
|
|||
// it is equivalent to
|
|||
// var v NewElement
|
|||
// v.SetUint64(...)
|
|||
func NewElementFromUint64(v uint64) *Element { |
|||
z := Element{v} |
|||
z.Mul(&z, &rSquare) |
|||
return &z |
|||
} |
|||
|
|||
// SetUint64 z = v, sets z LSB to v (non-Montgomery form) and convert z to Montgomery form
|
|||
func (z *Element) SetUint64(v uint64) *Element { |
|||
*z = Element{v} |
|||
return z.Mul(z, &rSquare) // z.ToMont()
|
|||
} |
|||
|
|||
// Set z = x
|
|||
func (z *Element) Set(x *Element) *Element { |
|||
z[0] = x[0] |
|||
return z |
|||
} |
|||
|
|||
// SetInterface converts provided interface into Element
|
|||
// returns an error if provided type is not supported
|
|||
// supported types: Element, *Element, uint64, int, string (interpreted as base10 integer),
|
|||
// *big.Int, big.Int, []byte
|
|||
func (z *Element) SetInterface(i1 interface{}) (*Element, error) { |
|||
switch c1 := i1.(type) { |
|||
case Element: |
|||
return z.Set(&c1), nil |
|||
case *Element: |
|||
return z.Set(c1), nil |
|||
case uint64: |
|||
return z.SetUint64(c1), nil |
|||
case int: |
|||
return z.SetString(strconv.Itoa(c1)), nil |
|||
case string: |
|||
return z.SetString(c1), nil |
|||
case *big.Int: |
|||
return z.SetBigInt(c1), nil |
|||
case big.Int: |
|||
return z.SetBigInt(&c1), nil |
|||
case []byte: |
|||
return z.SetBytes(c1), nil |
|||
default: |
|||
return nil, errors.New("can't set ffg.Element from type " + reflect.TypeOf(i1).String()) |
|||
} |
|||
} |
|||
|
|||
// SetZero z = 0
|
|||
func (z *Element) SetZero() *Element { |
|||
z[0] = 0 |
|||
return z |
|||
} |
|||
|
|||
// SetOne z = 1 (in Montgomery form)
|
|||
func (z *Element) SetOne() *Element { |
|||
z[0] = 4294967295 |
|||
return z |
|||
} |
|||
|
|||
// Div z = x*y^-1 mod q
|
|||
func (z *Element) Div(x, y *Element) *Element { |
|||
var yInv Element |
|||
yInv.Inverse(y) |
|||
z.Mul(x, &yInv) |
|||
return z |
|||
} |
|||
|
|||
// Bit returns the i'th bit, with lsb == bit 0.
|
|||
// It is the responsability of the caller to convert from Montgomery to Regular form if needed
|
|||
func (z *Element) Bit(i uint64) uint64 { |
|||
j := i / 64 |
|||
if j >= 1 { |
|||
return 0 |
|||
} |
|||
return uint64(z[j] >> (i % 64) & 1) |
|||
} |
|||
|
|||
// Equal returns z == x
|
|||
func (z *Element) Equal(x *Element) bool { |
|||
return (z[0] == x[0]) |
|||
} |
|||
|
|||
// IsZero returns z == 0
|
|||
func (z *Element) IsZero() bool { |
|||
return (z[0]) == 0 |
|||
} |
|||
|
|||
// IsUint64 returns true if z[0] >= 0 and all other words are 0
|
|||
func (z *Element) IsUint64() bool { |
|||
return true |
|||
} |
|||
|
|||
// Cmp compares (lexicographic order) z and x and returns:
|
|||
//
|
|||
// -1 if z < x
|
|||
// 0 if z == x
|
|||
// +1 if z > x
|
|||
//
|
|||
func (z *Element) Cmp(x *Element) int { |
|||
_z := *z |
|||
_x := *x |
|||
_z.FromMont() |
|||
_x.FromMont() |
|||
if _z[0] > _x[0] { |
|||
return 1 |
|||
} else if _z[0] < _x[0] { |
|||
return -1 |
|||
} |
|||
return 0 |
|||
} |
|||
|
|||
// LexicographicallyLargest returns true if this element is strictly lexicographically
|
|||
// larger than its negation, false otherwise
|
|||
func (z *Element) LexicographicallyLargest() bool { |
|||
// adapted from github.com/zkcrypto/bls12_381
|
|||
// we check if the element is larger than (q-1) / 2
|
|||
// if z - (((q -1) / 2) + 1) have no underflow, then z > (q-1) / 2
|
|||
|
|||
_z := *z |
|||
_z.FromMont() |
|||
|
|||
var b uint64 |
|||
_, b = bits.Sub64(_z[0], 9223372034707292161, 0) |
|||
|
|||
return b == 0 |
|||
} |
|||
|
|||
// SetRandom sets z to a random element < q
|
|||
func (z *Element) SetRandom() (*Element, error) { |
|||
var bytes [8]byte |
|||
if _, err := io.ReadFull(rand.Reader, bytes[:]); err != nil { |
|||
return nil, err |
|||
} |
|||
z[0] = binary.BigEndian.Uint64(bytes[0:8]) |
|||
z[0] %= 18446744069414584321 |
|||
|
|||
// if z > q --> z -= q
|
|||
// note: this is NOT constant time
|
|||
if !(z[0] < 18446744069414584321) { |
|||
z[0], _ = bits.Sub64(z[0], 18446744069414584321, 0) |
|||
} |
|||
|
|||
return z, nil |
|||
} |
|||
|
|||
// One returns 1 (in montgommery form)
|
|||
func One() Element { |
|||
var one Element |
|||
one.SetOne() |
|||
return one |
|||
} |
|||
|
|||
// Halve sets z to z / 2 (mod p)
|
|||
func (z *Element) Halve() { |
|||
var twoInv Element |
|||
twoInv.SetOne().Double(&twoInv).Inverse(&twoInv) |
|||
z.Mul(z, &twoInv) |
|||
|
|||
} |
|||
|
|||
// API with assembly impl
|
|||
|
|||
// Mul z = x * y mod q
|
|||
// see https://hackmd.io/@zkteam/modular_multiplication
|
|||
func (z *Element) Mul(x, y *Element) *Element { |
|||
mul(z, x, y) |
|||
return z |
|||
} |
|||
|
|||
// Square z = x * x mod q
|
|||
// see https://hackmd.io/@zkteam/modular_multiplication
|
|||
func (z *Element) Square(x *Element) *Element { |
|||
mul(z, x, x) |
|||
return z |
|||
} |
|||
|
|||
// FromMont converts z in place (i.e. mutates) from Montgomery to regular representation
|
|||
// sets and returns z = z * 1
|
|||
func (z *Element) FromMont() *Element { |
|||
fromMont(z) |
|||
return z |
|||
} |
|||
|
|||
// Add z = x + y mod q
|
|||
func (z *Element) Add(x, y *Element) *Element { |
|||
add(z, x, y) |
|||
return z |
|||
} |
|||
|
|||
// Double z = x + x mod q, aka Lsh 1
|
|||
func (z *Element) Double(x *Element) *Element { |
|||
double(z, x) |
|||
return z |
|||
} |
|||
|
|||
// Sub z = x - y mod q
|
|||
func (z *Element) Sub(x, y *Element) *Element { |
|||
sub(z, x, y) |
|||
return z |
|||
} |
|||
|
|||
// Neg z = q - x
|
|||
func (z *Element) Neg(x *Element) *Element { |
|||
neg(z, x) |
|||
return z |
|||
} |
|||
|
|||
// Generic (no ADX instructions, no AMD64) versions of multiplication and squaring algorithms
|
|||
|
|||
func _mulGeneric(z, x, y *Element) { |
|||
|
|||
var t [2]uint64 |
|||
var D uint64 |
|||
var m, C uint64 |
|||
// -----------------------------------
|
|||
// First loop
|
|||
|
|||
C, t[0] = bits.Mul64(y[0], x[0]) |
|||
|
|||
t[1], D = bits.Add64(t[1], C, 0) |
|||
|
|||
// m = t[0]n'[0] mod W
|
|||
m = t[0] * 18446744069414584319 |
|||
|
|||
// -----------------------------------
|
|||
// Second loop
|
|||
C = madd0(m, 18446744069414584321, t[0]) |
|||
|
|||
t[0], C = bits.Add64(t[1], C, 0) |
|||
t[1], _ = bits.Add64(0, D, C) |
|||
|
|||
if t[1] != 0 { |
|||
// we need to reduce, we have a result on 2 words
|
|||
z[0], _ = bits.Sub64(t[0], 18446744069414584321, 0) |
|||
|
|||
return |
|||
|
|||
} |
|||
|
|||
// copy t into z
|
|||
z[0] = t[0] |
|||
|
|||
// if z > q --> z -= q
|
|||
// note: this is NOT constant time
|
|||
if !(z[0] < 18446744069414584321) { |
|||
z[0], _ = bits.Sub64(z[0], 18446744069414584321, 0) |
|||
} |
|||
} |
|||
|
|||
func _fromMontGeneric(z *Element) { |
|||
// the following lines implement z = z * 1
|
|||
// with a modified CIOS montgomery multiplication
|
|||
{ |
|||
// m = z[0]n'[0] mod W
|
|||
m := z[0] * 18446744069414584319 |
|||
C := madd0(m, 18446744069414584321, z[0]) |
|||
z[0] = C |
|||
} |
|||
|
|||
// if z > q --> z -= q
|
|||
// note: this is NOT constant time
|
|||
if !(z[0] < 18446744069414584321) { |
|||
z[0], _ = bits.Sub64(z[0], 18446744069414584321, 0) |
|||
} |
|||
} |
|||
|
|||
func _addGeneric(z, x, y *Element) { |
|||
var carry uint64 |
|||
|
|||
z[0], carry = bits.Add64(x[0], y[0], 0) |
|||
// if we overflowed the last addition, z >= q
|
|||
// if z >= q, z = z - q
|
|||
if carry != 0 { |
|||
// we overflowed, so z >= q
|
|||
z[0], _ = bits.Sub64(z[0], 18446744069414584321, 0) |
|||
return |
|||
} |
|||
|
|||
// if z > q --> z -= q
|
|||
// note: this is NOT constant time
|
|||
if !(z[0] < 18446744069414584321) { |
|||
z[0], _ = bits.Sub64(z[0], 18446744069414584321, 0) |
|||
} |
|||
} |
|||
|
|||
func _doubleGeneric(z, x *Element) { |
|||
var carry uint64 |
|||
|
|||
z[0], carry = bits.Add64(x[0], x[0], 0) |
|||
// if we overflowed the last addition, z >= q
|
|||
// if z >= q, z = z - q
|
|||
if carry != 0 { |
|||
// we overflowed, so z >= q
|
|||
z[0], _ = bits.Sub64(z[0], 18446744069414584321, 0) |
|||
return |
|||
} |
|||
|
|||
// if z > q --> z -= q
|
|||
// note: this is NOT constant time
|
|||
if !(z[0] < 18446744069414584321) { |
|||
z[0], _ = bits.Sub64(z[0], 18446744069414584321, 0) |
|||
} |
|||
} |
|||
|
|||
func _subGeneric(z, x, y *Element) { |
|||
var b uint64 |
|||
z[0], b = bits.Sub64(x[0], y[0], 0) |
|||
if b != 0 { |
|||
z[0], _ = bits.Add64(z[0], 18446744069414584321, 0) |
|||
} |
|||
} |
|||
|
|||
func _negGeneric(z, x *Element) { |
|||
if x.IsZero() { |
|||
z.SetZero() |
|||
return |
|||
} |
|||
z[0], _ = bits.Sub64(18446744069414584321, x[0], 0) |
|||
} |
|||
|
|||
func _reduceGeneric(z *Element) { |
|||
|
|||
// if z > q --> z -= q
|
|||
// note: this is NOT constant time
|
|||
if !(z[0] < 18446744069414584321) { |
|||
z[0], _ = bits.Sub64(z[0], 18446744069414584321, 0) |
|||
} |
|||
} |
|||
|
|||
func mulByConstant(z *Element, c uint8) { |
|||
switch c { |
|||
case 0: |
|||
z.SetZero() |
|||
return |
|||
case 1: |
|||
return |
|||
case 2: |
|||
z.Double(z) |
|||
return |
|||
case 3: |
|||
_z := *z |
|||
z.Double(z).Add(z, &_z) |
|||
case 5: |
|||
_z := *z |
|||
z.Double(z).Double(z).Add(z, &_z) |
|||
default: |
|||
var y Element |
|||
y.SetUint64(uint64(c)) |
|||
z.Mul(z, &y) |
|||
} |
|||
} |
|||
|
|||
// BatchInvert returns a new slice with every element inverted.
|
|||
// Uses Montgomery batch inversion trick
|
|||
func BatchInvert(a []Element) []Element { |
|||
res := make([]Element, len(a)) |
|||
if len(a) == 0 { |
|||
return res |
|||
} |
|||
|
|||
zeroes := make([]bool, len(a)) |
|||
accumulator := One() |
|||
|
|||
for i := 0; i < len(a); i++ { |
|||
if a[i].IsZero() { |
|||
zeroes[i] = true |
|||
continue |
|||
} |
|||
res[i] = accumulator |
|||
accumulator.Mul(&accumulator, &a[i]) |
|||
} |
|||
|
|||
accumulator.Inverse(&accumulator) |
|||
|
|||
for i := len(a) - 1; i >= 0; i-- { |
|||
if zeroes[i] { |
|||
continue |
|||
} |
|||
res[i].Mul(&res[i], &accumulator) |
|||
accumulator.Mul(&accumulator, &a[i]) |
|||
} |
|||
|
|||
return res |
|||
} |
|||
|
|||
func _butterflyGeneric(a, b *Element) { |
|||
t := *a |
|||
a.Add(a, b) |
|||
b.Sub(&t, b) |
|||
} |
|||
|
|||
// BitLen returns the minimum number of bits needed to represent z
|
|||
// returns 0 if z == 0
|
|||
func (z *Element) BitLen() int { |
|||
return bits.Len64(z[0]) |
|||
} |
|||
|
|||
// Exp z = x^exponent mod q
|
|||
func (z *Element) Exp(x Element, exponent *big.Int) *Element { |
|||
var bZero big.Int |
|||
if exponent.Cmp(&bZero) == 0 { |
|||
return z.SetOne() |
|||
} |
|||
|
|||
z.Set(&x) |
|||
|
|||
for i := exponent.BitLen() - 2; i >= 0; i-- { |
|||
z.Square(z) |
|||
if exponent.Bit(i) == 1 { |
|||
z.Mul(z, &x) |
|||
} |
|||
} |
|||
|
|||
return z |
|||
} |
|||
|
|||
// ToMont converts z to Montgomery form
|
|||
// sets and returns z = z * r^2
|
|||
func (z *Element) ToMont() *Element { |
|||
return z.Mul(z, &rSquare) |
|||
} |
|||
|
|||
// ToRegular returns z in regular form (doesn't mutate z)
|
|||
func (z Element) ToRegular() Element { |
|||
return *z.FromMont() |
|||
} |
|||
|
|||
// String returns the string form of an Element in Montgomery form
|
|||
func (z *Element) String() string { |
|||
zz := *z |
|||
zz.FromMont() |
|||
if zz.IsUint64() { |
|||
return strconv.FormatUint(zz[0], 10) |
|||
} else { |
|||
var zzNeg Element |
|||
zzNeg.Neg(z) |
|||
zzNeg.FromMont() |
|||
if zzNeg.IsUint64() { |
|||
return "-" + strconv.FormatUint(zzNeg[0], 10) |
|||
} |
|||
} |
|||
vv := bigIntPool.Get().(*big.Int) |
|||
defer bigIntPool.Put(vv) |
|||
return zz.ToBigInt(vv).String() |
|||
} |
|||
|
|||
// ToBigInt returns z as a big.Int in Montgomery form
|
|||
func (z *Element) ToBigInt(res *big.Int) *big.Int { |
|||
var b [Limbs * 8]byte |
|||
binary.BigEndian.PutUint64(b[0:8], z[0]) |
|||
|
|||
return res.SetBytes(b[:]) |
|||
} |
|||
|
|||
// ToBigIntRegular returns z as a big.Int in regular form
|
|||
func (z Element) ToBigIntRegular(res *big.Int) *big.Int { |
|||
z.FromMont() |
|||
return z.ToBigInt(res) |
|||
} |
|||
|
|||
// ToUint64Regular returns z as a uint64 in regular form
|
|||
func (z Element) ToUint64Regular() uint64 { |
|||
z.FromMont() |
|||
return z[0] |
|||
} |
|||
|
|||
// Bytes returns the regular (non montgomery) value
|
|||
// of z as a big-endian byte array.
|
|||
func (z *Element) Bytes() (res [Limbs * 8]byte) { |
|||
_z := z.ToRegular() |
|||
binary.BigEndian.PutUint64(res[0:8], _z[0]) |
|||
|
|||
return |
|||
} |
|||
|
|||
// Marshal returns the regular (non montgomery) value
|
|||
// of z as a big-endian byte slice.
|
|||
func (z *Element) Marshal() []byte { |
|||
b := z.Bytes() |
|||
return b[:] |
|||
} |
|||
|
|||
// SetBytes interprets e as the bytes of a big-endian unsigned integer,
|
|||
// sets z to that value (in Montgomery form), and returns z.
|
|||
func (z *Element) SetBytes(e []byte) *Element { |
|||
// get a big int from our pool
|
|||
vv := bigIntPool.Get().(*big.Int) |
|||
vv.SetBytes(e) |
|||
|
|||
// set big int
|
|||
z.SetBigInt(vv) |
|||
|
|||
// put temporary object back in pool
|
|||
bigIntPool.Put(vv) |
|||
|
|||
return z |
|||
} |
|||
|
|||
// SetBigInt sets z to v (regular form) and returns z in Montgomery form
|
|||
func (z *Element) SetBigInt(v *big.Int) *Element { |
|||
z.SetZero() |
|||
|
|||
var zero big.Int |
|||
|
|||
// fast path
|
|||
c := v.Cmp(&_modulus) |
|||
if c == 0 { |
|||
// v == 0
|
|||
return z |
|||
} else if c != 1 && v.Cmp(&zero) != -1 { |
|||
// 0 < v < q
|
|||
return z.setBigInt(v) |
|||
} |
|||
|
|||
// get temporary big int from the pool
|
|||
vv := bigIntPool.Get().(*big.Int) |
|||
|
|||
// copy input + modular reduction
|
|||
vv.Set(v) |
|||
vv.Mod(v, &_modulus) |
|||
|
|||
// set big int byte value
|
|||
z.setBigInt(vv) |
|||
|
|||
// release object into pool
|
|||
bigIntPool.Put(vv) |
|||
return z |
|||
} |
|||
|
|||
// setBigInt assumes 0 <= v < q
|
|||
func (z *Element) setBigInt(v *big.Int) *Element { |
|||
vBits := v.Bits() |
|||
|
|||
if bits.UintSize == 64 { |
|||
for i := 0; i < len(vBits); i++ { |
|||
z[i] = uint64(vBits[i]) |
|||
} |
|||
} else { |
|||
for i := 0; i < len(vBits); i++ { |
|||
if i%2 == 0 { |
|||
z[i/2] = uint64(vBits[i]) |
|||
} else { |
|||
z[i/2] |= uint64(vBits[i]) << 32 |
|||
} |
|||
} |
|||
} |
|||
|
|||
return z.ToMont() |
|||
} |
|||
|
|||
// SetString creates a big.Int with s (in base 10) and calls SetBigInt on z
|
|||
func (z *Element) SetString(s string) *Element { |
|||
// get temporary big int from the pool
|
|||
vv := bigIntPool.Get().(*big.Int) |
|||
|
|||
if _, ok := vv.SetString(s, 10); !ok { |
|||
panic("Element.SetString failed -> can't parse number in base10 into a big.Int") |
|||
} |
|||
z.SetBigInt(vv) |
|||
|
|||
// release object into pool
|
|||
bigIntPool.Put(vv) |
|||
|
|||
return z |
|||
} |
|||
|
|||
var ( |
|||
_bLegendreExponentElement *big.Int |
|||
_bSqrtExponentElement *big.Int |
|||
) |
|||
|
|||
func init() { |
|||
_bLegendreExponentElement, _ = new(big.Int).SetString("7fffffff80000000", 16) |
|||
const sqrtExponentElement = "7fffffff" |
|||
_bSqrtExponentElement, _ = new(big.Int).SetString(sqrtExponentElement, 16) |
|||
} |
|||
|
|||
// Legendre returns the Legendre symbol of z (either +1, -1, or 0.)
|
|||
func (z *Element) Legendre() int { |
|||
var l Element |
|||
// z^((q-1)/2)
|
|||
l.Exp(*z, _bLegendreExponentElement) |
|||
|
|||
if l.IsZero() { |
|||
return 0 |
|||
} |
|||
|
|||
// if l == 1
|
|||
if l[0] == 4294967295 { |
|||
return 1 |
|||
} |
|||
return -1 |
|||
} |
|||
|
|||
// Sqrt z = √x mod q
|
|||
// if the square root doesn't exist (x is not a square mod q)
|
|||
// Sqrt leaves z unchanged and returns nil
|
|||
func (z *Element) Sqrt(x *Element) *Element { |
|||
// q ≡ 1 (mod 4)
|
|||
// see modSqrtTonelliShanks in math/big/int.go
|
|||
// using https://www.maa.org/sites/default/files/pdf/upload_library/22/Polya/07468342.di020786.02p0470a.pdf
|
|||
|
|||
var y, b, t, w Element |
|||
// w = x^((s-1)/2))
|
|||
w.Exp(*x, _bSqrtExponentElement) |
|||
|
|||
// y = x^((s+1)/2)) = w * x
|
|||
y.Mul(x, &w) |
|||
|
|||
// b = x^s = w * w * x = y * x
|
|||
b.Mul(&w, &y) |
|||
|
|||
// g = nonResidue ^ s
|
|||
var g = Element{ |
|||
15733474329512464024, |
|||
} |
|||
r := uint64(32) |
|||
|
|||
// compute legendre symbol
|
|||
// t = x^((q-1)/2) = r-1 squaring of x^s
|
|||
t = b |
|||
for i := uint64(0); i < r-1; i++ { |
|||
t.Square(&t) |
|||
} |
|||
if t.IsZero() { |
|||
return z.SetZero() |
|||
} |
|||
if !(t[0] == 4294967295) { |
|||
// t != 1, we don't have a square root
|
|||
return nil |
|||
} |
|||
for { |
|||
var m uint64 |
|||
t = b |
|||
|
|||
// for t != 1
|
|||
for !(t[0] == 4294967295) { |
|||
t.Square(&t) |
|||
m++ |
|||
} |
|||
|
|||
if m == 0 { |
|||
return z.Set(&y) |
|||
} |
|||
// t = g^(2^(r-m-1)) mod q
|
|||
ge := int(r - m - 1) |
|||
t = g |
|||
for ge > 0 { |
|||
t.Square(&t) |
|||
ge-- |
|||
} |
|||
|
|||
g.Square(&t) |
|||
y.Mul(&y, &t) |
|||
b.Mul(&b, &g) |
|||
r = m |
|||
} |
|||
} |
|||
|
|||
// Inverse z = x^-1 mod q
|
|||
// note: allocates a big.Int (math/big)
|
|||
func (z *Element) Inverse(x *Element) *Element { |
|||
var _xNonMont big.Int |
|||
x.ToBigIntRegular(&_xNonMont) |
|||
_xNonMont.ModInverse(&_xNonMont, Modulus()) |
|||
z.SetBigInt(&_xNonMont) |
|||
return z |
|||
} |
@ -0,0 +1,113 @@ |
|||
//go:build gofuzz
|
|||
// +build gofuzz
|
|||
|
|||
// Copyright 2020 ConsenSys Software Inc.
|
|||
//
|
|||
// Licensed under the Apache License, Version 2.0 (the "License");
|
|||
// you may not use this file except in compliance with the License.
|
|||
// You may obtain a copy of the License at
|
|||
//
|
|||
// http://www.apache.org/licenses/LICENSE-2.0
|
|||
//
|
|||
// Unless required by applicable law or agreed to in writing, software
|
|||
// distributed under the License is distributed on an "AS IS" BASIS,
|
|||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|||
// See the License for the specific language governing permissions and
|
|||
// limitations under the License.
|
|||
|
|||
// Code generated by consensys/gnark-crypto DO NOT EDIT
|
|||
|
|||
package ffg |
|||
|
|||
import ( |
|||
"bytes" |
|||
"encoding/binary" |
|||
"io" |
|||
"math/big" |
|||
"math/bits" |
|||
) |
|||
|
|||
const ( |
|||
fuzzInteresting = 1 |
|||
fuzzNormal = 0 |
|||
fuzzDiscard = -1 |
|||
) |
|||
|
|||
// Fuzz arithmetic operations fuzzer
|
|||
func Fuzz(data []byte) int { |
|||
r := bytes.NewReader(data) |
|||
|
|||
var e1, e2 Element |
|||
e1.SetRawBytes(r) |
|||
e2.SetRawBytes(r) |
|||
|
|||
{ |
|||
// mul assembly
|
|||
|
|||
var c, _c Element |
|||
a, _a, b, _b := e1, e1, e2, e2 |
|||
c.Mul(&a, &b) |
|||
_mulGeneric(&_c, &_a, &_b) |
|||
|
|||
if !c.Equal(&_c) { |
|||
panic("mul asm != mul generic on Element") |
|||
} |
|||
} |
|||
|
|||
{ |
|||
// inverse
|
|||
inv := e1 |
|||
inv.Inverse(&inv) |
|||
|
|||
var bInv, b1, b2 big.Int |
|||
e1.ToBigIntRegular(&b1) |
|||
bInv.ModInverse(&b1, Modulus()) |
|||
inv.ToBigIntRegular(&b2) |
|||
|
|||
if b2.Cmp(&bInv) != 0 { |
|||
panic("inverse operation doesn't match big int result") |
|||
} |
|||
} |
|||
|
|||
{ |
|||
// a + -a == 0
|
|||
a, b := e1, e1 |
|||
b.Neg(&b) |
|||
a.Add(&a, &b) |
|||
if !a.IsZero() { |
|||
panic("a + -a != 0") |
|||
} |
|||
} |
|||
|
|||
return fuzzNormal |
|||
|
|||
} |
|||
|
|||
// SetRawBytes reads up to Bytes (bytes needed to represent Element) from reader
|
|||
// and interpret it as big endian uint64
|
|||
// used for fuzzing purposes only
|
|||
func (z *Element) SetRawBytes(r io.Reader) { |
|||
|
|||
buf := make([]byte, 8) |
|||
|
|||
for i := 0; i < len(z); i++ { |
|||
if _, err := io.ReadFull(r, buf); err != nil { |
|||
goto eof |
|||
} |
|||
z[i] = binary.BigEndian.Uint64(buf[:]) |
|||
} |
|||
eof: |
|||
z[0] %= qElement[0] |
|||
|
|||
if z.BiggerModulus() { |
|||
var b uint64 |
|||
z[0], b = bits.Sub64(z[0], qElement[0], 0) |
|||
} |
|||
|
|||
return |
|||
} |
|||
|
|||
func (z *Element) BiggerModulus() bool { |
|||
|
|||
return z[0] >= qElement[0] |
|||
} |
@ -0,0 +1,17 @@ |
|||
// Copyright 2020 ConsenSys Software Inc.
|
|||
//
|
|||
// Licensed under the Apache License, Version 2.0 (the "License");
|
|||
// you may not use this file except in compliance with the License.
|
|||
// You may obtain a copy of the License at
|
|||
//
|
|||
// http://www.apache.org/licenses/LICENSE-2.0
|
|||
//
|
|||
// Unless required by applicable law or agreed to in writing, software
|
|||
// distributed under the License is distributed on an "AS IS" BASIS,
|
|||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|||
// See the License for the specific language governing permissions and
|
|||
// limitations under the License.
|
|||
|
|||
// Code generated by consensys/gnark-crypto DO NOT EDIT
|
|||
|
|||
package ffg |
@ -0,0 +1,75 @@ |
|||
// Copyright 2020 ConsenSys Software Inc.
|
|||
//
|
|||
// Licensed under the Apache License, Version 2.0 (the "License");
|
|||
// you may not use this file except in compliance with the License.
|
|||
// You may obtain a copy of the License at
|
|||
//
|
|||
// http://www.apache.org/licenses/LICENSE-2.0
|
|||
//
|
|||
// Unless required by applicable law or agreed to in writing, software
|
|||
// distributed under the License is distributed on an "AS IS" BASIS,
|
|||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|||
// See the License for the specific language governing permissions and
|
|||
// limitations under the License.
|
|||
|
|||
// Code generated by consensys/gnark-crypto DO NOT EDIT
|
|||
|
|||
package ffg |
|||
|
|||
// /!\ WARNING /!\
|
|||
// this code has not been audited and is provided as-is. In particular,
|
|||
// there is no security guarantees such as constant time implementation
|
|||
// or side-channel attack resistance
|
|||
// /!\ WARNING /!\
|
|||
|
|||
// MulBy3 x *= 3
|
|||
func MulBy3(x *Element) { |
|||
mulByConstant(x, 3) |
|||
} |
|||
|
|||
// MulBy5 x *= 5
|
|||
func MulBy5(x *Element) { |
|||
mulByConstant(x, 5) |
|||
} |
|||
|
|||
// MulBy13 x *= 13
|
|||
func MulBy13(x *Element) { |
|||
mulByConstant(x, 13) |
|||
} |
|||
|
|||
// Butterfly sets
|
|||
// a = a + b
|
|||
// b = a - b
|
|||
func Butterfly(a, b *Element) { |
|||
_butterflyGeneric(a, b) |
|||
} |
|||
|
|||
func mul(z, x, y *Element) { |
|||
_mulGeneric(z, x, y) |
|||
} |
|||
|
|||
// FromMont converts z in place (i.e. mutates) from Montgomery to regular representation
|
|||
// sets and returns z = z * 1
|
|||
func fromMont(z *Element) { |
|||
_fromMontGeneric(z) |
|||
} |
|||
|
|||
func add(z, x, y *Element) { |
|||
_addGeneric(z, x, y) |
|||
} |
|||
|
|||
func double(z, x *Element) { |
|||
_doubleGeneric(z, x) |
|||
} |
|||
|
|||
func sub(z, x, y *Element) { |
|||
_subGeneric(z, x, y) |
|||
} |
|||
|
|||
func neg(z, x *Element) { |
|||
_negGeneric(z, x) |
|||
} |
|||
|
|||
func reduce(z *Element) { |
|||
_reduceGeneric(z) |
|||
} |
@ -0,0 +1,131 @@ |
|||
package poseidon |
|||
|
|||
import "github.com/iden3/go-iden3-crypto/ffg" |
|||
|
|||
const ( |
|||
NROUNDSF = 8 //nolint:golint
|
|||
NROUNDSP = 22 //nolint:golint
|
|||
CAPLEN = 4 //nolint:golint
|
|||
mLen = 12 |
|||
) |
|||
|
|||
var ( |
|||
mcirc = []uint64{17, 15, 41, 16, 2, 28, 13, 13, 39, 18, 34, 20} |
|||
mdiag = []uint64{8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0} |
|||
|
|||
c = []uint64{ |
|||
0xb585f766f2144405, 0x7746a55f43921ad7, 0xb2fb0d31cee799b4, 0x0f6760a4803427d7, |
|||
0xe10d666650f4e012, 0x8cae14cb07d09bf1, 0xd438539c95f63e9f, 0xef781c7ce35b4c3d, |
|||
0xcdc4a239b0c44426, 0x277fa208bf337bff, 0xe17653a29da578a1, 0xc54302f225db2c76, |
|||
0x86287821f722c881, 0x59cd1a8a41c18e55, 0xc3b919ad495dc574, 0xa484c4c5ef6a0781, |
|||
0x308bbd23dc5416cc, 0x6e4a40c18f30c09c, 0x9a2eedb70d8f8cfa, 0xe360c6e0ae486f38, |
|||
0xd5c7718fbfc647fb, 0xc35eae071903ff0b, 0x849c2656969c4be7, 0xc0572c8c08cbbbad, |
|||
0xe9fa634a21de0082, 0xf56f6d48959a600d, 0xf7d713e806391165, 0x8297132b32825daf, |
|||
0xad6805e0e30b2c8a, 0xac51d9f5fcf8535e, 0x502ad7dc18c2ad87, 0x57a1550c110b3041, |
|||
0x66bbd30e6ce0e583, 0x0da2abef589d644e, 0xf061274fdb150d61, 0x28b8ec3ae9c29633, |
|||
0x92a756e67e2b9413, 0x70e741ebfee96586, 0x019d5ee2af82ec1c, 0x6f6f2ed772466352, |
|||
0x7cf416cfe7e14ca1, 0x61df517b86a46439, 0x85dc499b11d77b75, 0x4b959b48b9c10733, |
|||
0xe8be3e5da8043e57, 0xf5c0bc1de6da8699, 0x40b12cbf09ef74bf, 0xa637093ecb2ad631, |
|||
0x3cc3f892184df408, 0x2e479dc157bf31bb, 0x6f49de07a6234346, 0x213ce7bede378d7b, |
|||
0x5b0431345d4dea83, 0xa2de45780344d6a1, 0x7103aaf94a7bf308, 0x5326fc0d97279301, |
|||
0xa9ceb74fec024747, 0x27f8ec88bb21b1a3, 0xfceb4fda1ded0893, 0xfac6ff1346a41675, |
|||
0x7131aa45268d7d8c, 0x9351036095630f9f, 0xad535b24afc26bfb, 0x4627f5c6993e44be, |
|||
0x645cf794b8f1cc58, 0x241c70ed0af61617, 0xacb8e076647905f1, 0x3737e9db4c4f474d, |
|||
0xe7ea5e33e75fffb6, 0x90dee49fc9bfc23a, 0xd1b1edf76bc09c92, 0x0b65481ba645c602, |
|||
0x99ad1aab0814283b, 0x438a7c91d416ca4d, 0xb60de3bcc5ea751c, 0xc99cab6aef6f58bc, |
|||
0x69a5ed92a72ee4ff, 0x5e7b329c1ed4ad71, 0x5fc0ac0800144885, 0x32db829239774eca, |
|||
0x0ade699c5830f310, 0x7cc5583b10415f21, 0x85df9ed2e166d64f, 0x6604df4fee32bcb1, |
|||
0xeb84f608da56ef48, 0xda608834c40e603d, 0x8f97fe408061f183, 0xa93f485c96f37b89, |
|||
0x6704e8ee8f18d563, 0xcee3e9ac1e072119, 0x510d0e65e2b470c1, 0xf6323f486b9038f0, |
|||
0x0b508cdeffa5ceef, 0xf2417089e4fb3cbd, 0x60e75c2890d15730, 0xa6217d8bf660f29c, |
|||
0x7159cd30c3ac118e, 0x839b4e8fafead540, 0x0d3f3e5e82920adc, 0x8f7d83bddee7bba8, |
|||
0x780f2243ea071d06, 0xeb915845f3de1634, 0xd19e120d26b6f386, 0x016ee53a7e5fecc6, |
|||
0xcb5fd54e7933e477, 0xacb8417879fd449f, 0x9c22190be7f74732, 0x5d693c1ba3ba3621, |
|||
0xdcef0797c2b69ec7, 0x3d639263da827b13, 0xe273fd971bc8d0e7, 0x418f02702d227ed5, |
|||
0x8c25fda3b503038c, 0x2cbaed4daec8c07c, 0x5f58e6afcdd6ddc2, 0x284650ac5e1b0eba, |
|||
0x635b337ee819dab5, 0x9f9a036ed4f2d49f, 0xb93e260cae5c170e, 0xb0a7eae879ddb76d, |
|||
0xd0762cbc8ca6570c, 0x34c6efb812b04bf5, 0x40bf0ab5fa14c112, 0xb6b570fc7c5740d3, |
|||
0x5a27b9002de33454, 0xb1a5b165b6d2b2d2, 0x8722e0ace9d1be22, 0x788ee3b37e5680fb, |
|||
0x14a726661551e284, 0x98b7672f9ef3b419, 0xbb93ae776bb30e3a, 0x28fd3b046380f850, |
|||
0x30a4680593258387, 0x337dc00c61bd9ce1, 0xd5eca244c7a4ff1d, 0x7762638264d279bd, |
|||
0xc1e434bedeefd767, 0x0299351a53b8ec22, 0xb2d456e4ad251b80, 0x3e9ed1fda49cea0b, |
|||
0x2972a92ba450bed8, 0x20216dd77be493de, 0xadffe8cf28449ec6, 0x1c4dbb1c4c27d243, |
|||
0x15a16a8a8322d458, 0x388a128b7fd9a609, 0x2300e5d6baedf0fb, 0x2f63aa8647e15104, |
|||
0xf1c36ce86ecec269, 0x27181125183970c9, 0xe584029370dca96d, 0x4d9bbc3e02f1cfb2, |
|||
0xea35bc29692af6f8, 0x18e21b4beabb4137, 0x1e3b9fc625b554f4, 0x25d64362697828fd, |
|||
0x5a3f1bb1c53a9645, 0xdb7f023869fb8d38, 0xb462065911d4e1fc, 0x49c24ae4437d8030, |
|||
0xd793862c112b0566, 0xaadd1106730d8feb, 0xc43b6e0e97b0d568, 0xe29024c18ee6fca2, |
|||
0x5e50c27535b88c66, 0x10383f20a4ff9a87, 0x38e8ee9d71a45af8, 0xdd5118375bf1a9b9, |
|||
0x775005982d74d7f7, 0x86ab99b4dde6c8b0, 0xb1204f603f51c080, 0xef61ac8470250ecf, |
|||
0x1bbcd90f132c603f, 0x0cd1dabd964db557, 0x11a3ae5beb9d1ec9, 0xf755bfeea585d11d, |
|||
0xa3b83250268ea4d7, 0x516306f4927c93af, 0xddb4ac49c9efa1da, 0x64bb6dec369d4418, |
|||
0xf9cc95c22b4c1fcc, 0x08d37f755f4ae9f6, 0xeec49b613478675b, 0xf143933aed25e0b0, |
|||
0xe4c5dd8255dfc622, 0xe7ad7756f193198e, 0x92c2318b87fff9cb, 0x739c25f8fd73596d, |
|||
0x5636cac9f16dfed0, 0xdd8f909a938e0172, 0xc6401fe115063f5b, 0x8ad97b33f1ac1455, |
|||
0x0c49366bb25e8513, 0x0784d3d2f1698309, 0x530fb67ea1809a81, 0x410492299bb01f49, |
|||
0x139542347424b9ac, 0x9cb0bd5ea1a1115e, 0x02e3f615c38f49a1, 0x985d4f4a9c5291ef, |
|||
0x775b9feafdcd26e7, 0x304265a6384f0f2d, 0x593664c39773012c, 0x4f0a2e5fb028f2ce, |
|||
0xdd611f1000c17442, 0xd8185f9adfea4fd0, 0xef87139ca9a3ab1e, 0x3ba71336c34ee133, |
|||
0x7d3a455d56b70238, 0x660d32e130182684, 0x297a863f48cd1f43, 0x90e0a736a751ebb7, |
|||
0x549f80ce550c4fd3, 0x0f73b2922f38bd64, 0x16bf1f73fb7a9c3f, 0x6d1f5a59005bec17, |
|||
0x02ff876fa5ef97c4, 0xc5cb72a2a51159b0, 0x8470f39d2d5c900e, 0x25abb3f1d39fcb76, |
|||
0x23eb8cc9b372442f, 0xd687ba55c64f6364, 0xda8d9e90fd8ff158, 0xe3cbdc7d2fe45ea7, |
|||
0xb9a8c9b3aee52297, 0xc0d28a5c10960bd3, 0x45d7ac9b68f71a34, 0xeeb76e397069e804, |
|||
0x3d06c8bd1514e2d9, 0x9c9c98207cb10767, 0x65700b51aedfb5ef, 0x911f451539869408, |
|||
0x7ae6849fbc3a0ec6, 0x3bb340eba06afe7e, 0xb46e9d8b682ea65e, 0x8dcf22f9a3b34356, |
|||
0x77bdaeda586257a7, 0xf19e400a5104d20d, 0xc368a348e46d950f, 0x9ef1cd60e679f284, |
|||
0xe89cd854d5d01d33, 0x5cd377dc8bb882a2, 0xa7b0fb7883eee860, 0x7684403ec392950d, |
|||
0x5fa3f06f4fed3b52, 0x8df57ac11bc04831, 0x2db01efa1e1e1897, 0x54846de4aadb9ca2, |
|||
0xba6745385893c784, 0x541d496344d2c75b, 0xe909678474e687fe, 0xdfe89923f6c9c2ff, |
|||
0xece5a71e0cfedc75, 0x5ff98fd5d51fe610, 0x83e8941918964615, 0x5922040b47f150c1, |
|||
0xf97d750e3dd94521, 0x5080d4c2b86f56d7, 0xa7de115b56c78d70, 0x6a9242ac87538194, |
|||
0xf7856ef7f9173e44, 0x2265fc92feb0dc09, 0x17dfc8e4f7ba8a57, 0x9001a64209f21db8, |
|||
0x90004c1371b893c5, 0xb932b7cf752e5545, 0xa0b1df81b6fe59fc, 0x8ef1dd26770af2c2, |
|||
0x0541a4f9cfbeed35, 0x9e61106178bfc530, 0xb3767e80935d8af2, 0x0098d5782065af06, |
|||
0x31d191cd5c1466c7, 0x410fefafa319ac9d, 0xbdf8f242e316c4ab, 0x9e8cd55b57637ed0, |
|||
0xde122bebe9a39368, 0x4d001fd58f002526, 0xca6637000eb4a9f8, 0x2f2339d624f91f78, |
|||
0x6d1a7918c80df518, 0xdf9a4939342308e9, 0xebc2151ee6c8398c, 0x03cc2ba8a1116515, |
|||
0xd341d037e840cf83, 0x387cb5d25af4afcc, 0xbba2515f22909e87, 0x7248fe7705f38e47, |
|||
0x4d61e56a525d225a, 0x262e963c8da05d3d, 0x59e89b094d220ec2, 0x055d5b52b78b9c5e, |
|||
0x82b27eb33514ef99, 0xd30094ca96b7ce7b, 0xcf5cb381cd0a1535, 0xfeed4db6919e5a7c, |
|||
0x41703f53753be59f, 0x5eeea940fcde8b6f, 0x4cd1f1b175100206, 0x4a20358574454ec0, |
|||
0x1478d361dbbf9fac, 0x6f02dc07d141875c, 0x296a202ed8e556a2, 0x2afd67999bf32ee5, |
|||
0x7acfd96efa95491d, 0x6798ba0c0abb2c6d, 0x34c6f57b26c92122, 0x5736e1bad206b5de, |
|||
0x20057d2a0056521b, 0x3dea5bd5d0578bd7, 0x16e50d897d4634ac, 0x29bff3ecb9b7a6e3, |
|||
0x475cd3205a3bdcde, 0x18a42105c31b7e88, 0x023e7414af663068, 0x15147108121967d7, |
|||
0xe4a3dff1d7d6fef9, 0x01a8d1a588085737, 0x11b4c74eda62beef, 0xe587cc0d69a73346, |
|||
0x1ff7327017aa2a6e, 0x594e29c42473d06b, 0xf6f31db1899b12d5, 0xc02ac5e47312d3ca, |
|||
0xe70201e960cb78b8, 0x6f90ff3b6a65f108, 0x42747a7245e7fa84, 0xd1f507e43ab749b2, |
|||
0x1c86d265f15750cd, 0x3996ce73dd832c1c, 0x8e7fba02983224bd, 0xba0dec7103255dd4, |
|||
0x9e9cbd781628fc5b, 0xdae8645996edd6a5, 0xdebe0853b1a1d378, 0xa49229d24d014343, |
|||
0x7be5b9ffda905e1c, 0xa3c95eaec244aa30, 0x0230bca8f4df0544, 0x4135c2bebfe148c6, |
|||
0x166fc0cc438a3c72, 0x3762b59a8ae83efa, 0xe8928a4c89114750, 0x2a440b51a4945ee5, |
|||
0x80cefd2b7d99ff83, 0xbb9879c6e61fd62a, 0x6e7c8f1a84265034, 0x164bb2de1bbeddc8, |
|||
0xf3c12fe54d5c653b, 0x40b9e922ed9771e2, 0x551f5b0fbe7b1840, 0x25032aa7c4cb1811, |
|||
0xaaed34074b164346, 0x8ffd96bbf9c9c81d, 0x70fc91eb5937085c, 0x7f795e2a5f915440, |
|||
0x4543d9df5476d3cb, 0xf172d73e004fc90d, 0xdfd1c4febcc81238, 0xbc8dfb627fe558fc, |
|||
} |
|||
|
|||
// C is a constant array of element
|
|||
C []*ffg.Element |
|||
// M is a matrix
|
|||
M [][]*ffg.Element |
|||
) |
|||
|
|||
func init() { |
|||
for i := 0; i < len(c); i++ { |
|||
C = append(C, ffg.NewElementFromUint64(c[i])) |
|||
} |
|||
|
|||
for i := 0; i < mLen; i++ { |
|||
var row []*ffg.Element |
|||
for j := 0; j < mLen; j++ { |
|||
ele := ffg.NewElementFromUint64(mcirc[(-i+j+mLen)%mLen]) |
|||
if i == j { |
|||
ele = ffg.NewElementFromUint64(mcirc[0] + mdiag[i]) |
|||
} |
|||
row = append(row, ele) |
|||
} |
|||
M = append(M, row) |
|||
} |
|||
} |
@ -0,0 +1,77 @@ |
|||
package poseidon |
|||
|
|||
import ( |
|||
"math/big" |
|||
|
|||
"github.com/iden3/go-iden3-crypto/ffg" |
|||
) |
|||
|
|||
func zero() *ffg.Element { |
|||
return ffg.NewElement() |
|||
} |
|||
|
|||
// exp7 performs x^7 mod p
|
|||
func exp7(a *ffg.Element) { |
|||
a.Exp(*a, big.NewInt(7)) //nolint:gomnd
|
|||
} |
|||
|
|||
// exp7state perform exp7 for whole state
|
|||
func exp7state(state []*ffg.Element) { |
|||
for i := 0; i < len(state); i++ { |
|||
exp7(state[i]) |
|||
} |
|||
} |
|||
|
|||
// ark computes Add-Round Key, from the paper https://eprint.iacr.org/2019/458.pdf
|
|||
func ark(state []*ffg.Element, it int) { |
|||
for i := 0; i < len(state); i++ { |
|||
state[i].Add(state[i], C[it+i]) |
|||
} |
|||
} |
|||
|
|||
// mix returns [[matrix]] * [vector]
|
|||
func mix(state []*ffg.Element) []*ffg.Element { |
|||
mul := zero() |
|||
newState := make([]*ffg.Element, mLen) |
|||
for i := 0; i < mLen; i++ { |
|||
newState[i] = zero() |
|||
} |
|||
for i := 0; i < mLen; i++ { |
|||
newState[i].SetUint64(0) |
|||
for j := 0; j < mLen; j++ { |
|||
mul.Mul(M[i][j], state[j]) |
|||
newState[i].Add(newState[i], mul) |
|||
} |
|||
} |
|||
return newState |
|||
} |
|||
|
|||
// Hash computes the Poseidon hash for the given inputs
|
|||
func Hash(inpBI [NROUNDSF]uint64, capBI [CAPLEN]uint64) ([CAPLEN]uint64, error) { |
|||
state := make([]*ffg.Element, mLen) |
|||
for i := 0; i < NROUNDSF; i++ { |
|||
state[i] = ffg.NewElement().SetUint64(inpBI[i]) |
|||
} |
|||
for i := 0; i < CAPLEN; i++ { |
|||
state[i+NROUNDSF] = ffg.NewElement().SetUint64(capBI[i]) |
|||
} |
|||
|
|||
for r := 0; r < NROUNDSF+NROUNDSP; r++ { |
|||
ark(state, r*mLen) |
|||
|
|||
if r < NROUNDSF/2 || r >= NROUNDSF/2+NROUNDSP { |
|||
exp7state(state) |
|||
} else { |
|||
exp7(state[0]) |
|||
} |
|||
|
|||
state = mix(state) |
|||
} |
|||
|
|||
return [CAPLEN]uint64{ |
|||
state[0].ToUint64Regular(), |
|||
state[1].ToUint64Regular(), |
|||
state[2].ToUint64Regular(), |
|||
state[3].ToUint64Regular(), |
|||
}, nil |
|||
} |
@ -0,0 +1,94 @@ |
|||
package poseidon |
|||
|
|||
import ( |
|||
"testing" |
|||
|
|||
"github.com/stretchr/testify/assert" |
|||
) |
|||
|
|||
const prime uint64 = 18446744069414584321 |
|||
|
|||
func TestPoseidonHash(t *testing.T) { |
|||
b0 := uint64(0) |
|||
b1 := uint64(1) |
|||
bm1 := prime - 1 |
|||
bM := prime |
|||
|
|||
h, err := Hash([NROUNDSF]uint64{b0, b0, b0, b0, b0, b0, b0, b0}, [CAPLEN]uint64{b0, b0, b0, b0}) |
|||
assert.Nil(t, err) |
|||
assert.Equal(t, |
|||
[CAPLEN]uint64{ |
|||
4330397376401421145, |
|||
14124799381142128323, |
|||
8742572140681234676, |
|||
14345658006221440202, |
|||
}, h, |
|||
) |
|||
|
|||
h, err = Hash([NROUNDSF]uint64{b1, b1, b1, b1, b1, b1, b1, b1}, [CAPLEN]uint64{b1, b1, b1, b1}) |
|||
assert.Nil(t, err) |
|||
assert.Equal(t, |
|||
[CAPLEN]uint64{ |
|||
16428316519797902711, |
|||
13351830238340666928, |
|||
682362844289978626, |
|||
12150588177266359240, |
|||
}, h, |
|||
) |
|||
|
|||
h, err = Hash([NROUNDSF]uint64{b1, b1, b1, b1, b1, b1, b1, b1}, [CAPLEN]uint64{b1, b1, b1, b1}) |
|||
assert.Nil(t, err) |
|||
assert.Equal(t, |
|||
[CAPLEN]uint64{ |
|||
16428316519797902711, |
|||
13351830238340666928, |
|||
682362844289978626, |
|||
12150588177266359240, |
|||
}, h, |
|||
) |
|||
|
|||
h, err = Hash( |
|||
[NROUNDSF]uint64{bm1, bm1, bm1, bm1, bm1, bm1, bm1, bm1}, |
|||
[CAPLEN]uint64{bm1, bm1, bm1, bm1}, |
|||
) |
|||
assert.Nil(t, err) |
|||
assert.Equal(t, |
|||
[CAPLEN]uint64{ |
|||
13691089994624172887, |
|||
15662102337790434313, |
|||
14940024623104903507, |
|||
10772674582659927682, |
|||
}, h, |
|||
) |
|||
|
|||
h, err = Hash([NROUNDSF]uint64{bM, bM, bM, bM, bM, bM, bM, bM}, [CAPLEN]uint64{b0, b0, b0, b0}) |
|||
assert.Nil(t, err) |
|||
assert.Equal(t, |
|||
[CAPLEN]uint64{ |
|||
4330397376401421145, |
|||
14124799381142128323, |
|||
8742572140681234676, |
|||
14345658006221440202, |
|||
}, h, |
|||
) |
|||
|
|||
h, err = Hash([NROUNDSF]uint64{ |
|||
uint64(923978), |
|||
uint64(235763497586), |
|||
uint64(9827635653498), |
|||
uint64(112870), |
|||
uint64(289273673480943876), |
|||
uint64(230295874986745876), |
|||
uint64(6254867324987), |
|||
uint64(2087), |
|||
}, [CAPLEN]uint64{b0, b0, b0, b0}) |
|||
assert.Nil(t, err) |
|||
assert.Equal(t, |
|||
[CAPLEN]uint64{ |
|||
1892171027578617759, |
|||
984732815927439256, |
|||
7866041765487844082, |
|||
8161503938059336191, |
|||
}, h, |
|||
) |
|||
} |