package babyjub import ( "crypto/rand" "github.com/iden3/go-iden3-crypto/mimc7" "github.com/iden3/go-iden3-crypto/poseidon" "github.com/iden3/go-iden3-crypto/utils" "math/big" ) // pruneBuffer prunes the buffer during key generation according to RFC 8032. // https://tools.ietf.org/html/rfc8032#page-13 func pruneBuffer(buf *[32]byte) *[32]byte { buf[0] = buf[0] & 0xF8 buf[31] = buf[31] & 0x7F buf[31] = buf[31] | 0x40 return buf } // PrivateKey is an EdDSA private key, which is a 32byte buffer. type PrivateKey [32]byte // NewRandPrivKey generates a new random private key (using cryptographically // secure randomness). func NewRandPrivKey() PrivateKey { var k PrivateKey _, err := rand.Read(k[:]) if err != nil { panic(err) } return k } // Scalar converts a private key into the scalar value s following the EdDSA // standard, and using blake-512 hash. func (k *PrivateKey) Scalar() *PrivKeyScalar { sBuf := Blake512(k[:]) sBuf32 := [32]byte{} copy(sBuf32[:], sBuf[:32]) pruneBuffer(&sBuf32) s := new(big.Int) utils.SetBigIntFromLEBytes(s, sBuf32[:]) s.Rsh(s, 3) return NewPrivKeyScalar(s) } // Pub returns the public key corresponding to a private key. func (k *PrivateKey) Public() *PublicKey { return k.Scalar().Public() } // PrivKeyScalar represents the scalar s output of a private key type PrivKeyScalar big.Int // NewPrivKeyScalar creates a new PrivKeyScalar from a big.Int func NewPrivKeyScalar(s *big.Int) *PrivKeyScalar { sk := PrivKeyScalar(*s) return &sk } // Pub returns the public key corresponding to the scalar value s of a private // key. func (s *PrivKeyScalar) Public() *PublicKey { p := NewPoint().Mul((*big.Int)(s), B8) pk := PublicKey(*p) return &pk } // BigInt returns the big.Int corresponding to a PrivKeyScalar. func (s *PrivKeyScalar) BigInt() *big.Int { return (*big.Int)(s) } // PublicKey represents an EdDSA public key, which is a curve point. type PublicKey Point func (pk PublicKey) MarshalText() ([]byte, error) { pkc := pk.Compress() return utils.Hex(pkc[:]).MarshalText() } func (pk PublicKey) String() string { pkc := pk.Compress() return utils.Hex(pkc[:]).String() } func (pk *PublicKey) UnmarshalText(h []byte) error { var pkc PublicKeyComp if err := utils.HexDecodeInto(pkc[:], h); err != nil { return err } pkd, err := pkc.Decompress() if err != nil { return err } *pk = *pkd return nil } // Point returns the Point corresponding to a PublicKey. func (p *PublicKey) Point() *Point { return (*Point)(p) } // PublicKeyComp represents a compressed EdDSA Public key; it's a compressed curve // point. type PublicKeyComp [32]byte func (buf PublicKeyComp) MarshalText() ([]byte, error) { return utils.Hex(buf[:]).MarshalText() } func (buf PublicKeyComp) String() string { return utils.Hex(buf[:]).String() } func (buf *PublicKeyComp) UnmarshalText(h []byte) error { return utils.HexDecodeInto(buf[:], h) } func (p *PublicKey) Compress() PublicKeyComp { return PublicKeyComp((*Point)(p).Compress()) } func (p *PublicKeyComp) Decompress() (*PublicKey, error) { point, err := NewPoint().Decompress(*p) if err != nil { return nil, err } pk := PublicKey(*point) return &pk, nil } // Signature represents an EdDSA uncompressed signature. type Signature struct { R8 *Point S *big.Int } // SignatureComp represents a compressed EdDSA signature. type SignatureComp [64]byte func (buf SignatureComp) MarshalText() ([]byte, error) { return utils.Hex(buf[:]).MarshalText() } func (buf SignatureComp) String() string { return utils.Hex(buf[:]).String() } func (buf *SignatureComp) UnmarshalText(h []byte) error { return utils.HexDecodeInto(buf[:], h) } // Compress an EdDSA signature by concatenating the compression of // the point R8 and the Little-Endian encoding of S. func (s *Signature) Compress() SignatureComp { R8p := s.R8.Compress() Sp := utils.BigIntLEBytes(s.S) buf := [64]byte{} copy(buf[:32], R8p[:]) copy(buf[32:], Sp[:]) return SignatureComp(buf) } // Decompress a compressed signature into s, and also returns the decompressed // signature. Returns error if the Point decompression fails. func (s *Signature) Decompress(buf [64]byte) (*Signature, error) { R8p := [32]byte{} copy(R8p[:], buf[:32]) var err error if s.R8, err = NewPoint().Decompress(R8p); err != nil { return nil, err } s.S = utils.SetBigIntFromLEBytes(new(big.Int), buf[32:]) return s, nil } // Decompress a compressed signature. Returns error if the Point decompression // fails. func (s *SignatureComp) Decompress() (*Signature, error) { return new(Signature).Decompress(*s) } // SignMimc7 signs a message encoded as a big.Int in Zq using blake-512 hash // for buffer hashing and mimc7 for big.Int hashing. func (k *PrivateKey) SignMimc7(msg *big.Int) *Signature { h1 := Blake512(k[:]) msgBuf := utils.BigIntLEBytes(msg) msgBuf32 := [32]byte{} copy(msgBuf32[:], msgBuf[:]) rBuf := Blake512(append(h1[32:], msgBuf32[:]...)) r := utils.SetBigIntFromLEBytes(new(big.Int), rBuf) // r = H(H_{32..63}(k), msg) r.Mod(r, SubOrder) R8 := NewPoint().Mul(r, B8) // R8 = r * 8 * B A := k.Public().Point() hmInput := []*big.Int{R8.X.BigInt(), R8.Y.BigInt(), A.X.BigInt(), A.Y.BigInt(), msg} hm, err := mimc7.Hash(hmInput, nil) // hm = H1(8*R.x, 8*R.y, A.x, A.y, msg) if err != nil { panic(err) } S := new(big.Int).Lsh(k.Scalar().BigInt(), 3) S = S.Mul(hm, S) S.Add(r, S) S.Mod(S, SubOrder) // S = r + hm * 8 * s return &Signature{R8: R8, S: S} } // VerifyMimc7 verifies the signature of a message encoded as a big.Int in Zq // using blake-512 hash for buffer hashing and mimc7 for big.Int hashing. func (p *PublicKey) VerifyMimc7(msg *big.Int, sig *Signature) bool { hmInput := []*big.Int{sig.R8.X.BigInt(), sig.R8.Y.BigInt(), p.X.BigInt(), p.Y.BigInt(), msg} hm, err := mimc7.Hash(hmInput, nil) // hm = H1(8*R.x, 8*R.y, A.x, A.y, msg) if err != nil { panic(err) } left := NewPoint().Mul(sig.S, B8) // left = s * 8 * B r1 := big.NewInt(8) r1.Mul(r1, hm) right := NewPoint().Mul(r1, p.Point()) right.Add(sig.R8, right) // right = 8 * R + 8 * hm * A return left.X.Equal(right.X) && left.Y.Equal(right.Y) } // SignPoseidon signs a message encoded as a big.Int in Zq using blake-512 hash // for buffer hashing and Poseidon for big.Int hashing. func (k *PrivateKey) SignPoseidon(msg *big.Int) *Signature { h1 := Blake512(k[:]) msgBuf := utils.BigIntLEBytes(msg) msgBuf32 := [32]byte{} copy(msgBuf32[:], msgBuf[:]) rBuf := Blake512(append(h1[32:], msgBuf32[:]...)) r := utils.SetBigIntFromLEBytes(new(big.Int), rBuf) // r = H(H_{32..63}(k), msg) r.Mod(r, SubOrder) R8 := NewPoint().Mul(r, B8) // R8 = r * 8 * B A := k.Public().Point() hmInput := [poseidon.T]*big.Int{R8.X.BigInt(), R8.Y.BigInt(), A.X.BigInt(), A.Y.BigInt(), msg, big.NewInt(int64(0))} hm, err := poseidon.PoseidonHash(hmInput) // hm = H1(8*R.x, 8*R.y, A.x, A.y, msg) if err != nil { panic(err) } S := new(big.Int).Lsh(k.Scalar().BigInt(), 3) S = S.Mul(hm, S) S.Add(r, S) S.Mod(S, SubOrder) // S = r + hm * 8 * s return &Signature{R8: R8, S: S} } // VerifyPoseidon verifies the signature of a message encoded as a big.Int in Zq // using blake-512 hash for buffer hashing and Poseidon for big.Int hashing. func (p *PublicKey) VerifyPoseidon(msg *big.Int, sig *Signature) bool { hmInput := [poseidon.T]*big.Int{sig.R8.X.BigInt(), sig.R8.Y.BigInt(), p.X.BigInt(), p.Y.BigInt(), msg, big.NewInt(int64(0))} hm, err := poseidon.PoseidonHash(hmInput) // hm = H1(8*R.x, 8*R.y, A.x, A.y, msg) if err != nil { panic(err) } left := NewPoint().Mul(sig.S, B8) // left = s * 8 * B r1 := big.NewInt(8) r1.Mul(r1, hm) right := NewPoint().Mul(r1, p.Point()) right.Add(sig.R8, right) // right = 8 * R + 8 * hm * A return left.X.Equal(right.X) && left.Y.Equal(right.Y) }