package babyjub import ( "fmt" "math/big" "github.com/iden3/go-iden3-crypto/constants" "github.com/iden3/go-iden3-crypto/ff" "github.com/iden3/go-iden3-crypto/utils" ) // A is one of the babyjub constants. var A *big.Int // Aff is A value in *ff.Element representation var Aff *ff.Element // D is one of the babyjub constants. var D *big.Int // Dff is D value in *ff.Element representation var Dff *ff.Element // Order of the babyjub curve. var Order *big.Int // SubOrder is the order of the subgroup of the babyjub curve that contains the // points that we use. var SubOrder *big.Int // B8 is a base point of the babyjub multiplied by 8 to make it a base point of // the subgroup in the curve. var B8 *Point // init initializes global numbers and the subgroup base. func init() { A = utils.NewIntFromString("168700") D = utils.NewIntFromString("168696") Aff = ff.NewElement().SetBigInt(A) Dff = ff.NewElement().SetBigInt(D) Order = utils.NewIntFromString( "21888242871839275222246405745257275088614511777268538073601725287587578984328") SubOrder = new(big.Int).Rsh(Order, 3) //nolint:gomnd B8 = NewPoint() B8.X = utils.NewIntFromString( "5299619240641551281634865583518297030282874472190772894086521144482721001553") B8.Y = utils.NewIntFromString( "16950150798460657717958625567821834550301663161624707787222815936182638968203") } // PointProjective is the Point representation in projective coordinates type PointProjective struct { X *ff.Element Y *ff.Element Z *ff.Element } // NewPointProjective creates a new Point in projective coordinates. func NewPointProjective() *PointProjective { return &PointProjective{X: ff.NewElement().SetZero(), Y: ff.NewElement().SetOne(), Z: ff.NewElement().SetOne()} } // Affine returns the Point from the projective representation func (p *PointProjective) Affine() *Point { if p.Z.Equal(ff.NewElement().SetZero()) { return &Point{ X: big.NewInt(0), Y: big.NewInt(0), } } zinv := ff.NewElement().Inverse(p.Z) x := ff.NewElement().Mul(p.X, zinv) y := ff.NewElement().Mul(p.Y, zinv) xBig := big.NewInt(0) x.ToBigIntRegular(xBig) yBig := big.NewInt(0) y.ToBigIntRegular(yBig) return &Point{ X: xBig, Y: yBig, } } // Add computes the addition of two points in projective coordinates // representation func (p *PointProjective) Add(q, o *PointProjective) *PointProjective { // add-2008-bbjlp // https://hyperelliptic.org/EFD/g1p/auto-twisted-projective.html#doubling-dbl-2008-bbjlp a := ff.NewElement().Mul(q.Z, o.Z) b := ff.NewElement().Square(a) c := ff.NewElement().Mul(q.X, o.X) d := ff.NewElement().Mul(q.Y, o.Y) e := ff.NewElement().Mul(Dff, c) e.Mul(e, d) f := ff.NewElement().Sub(b, e) g := ff.NewElement().Add(b, e) x1y1 := ff.NewElement().Add(q.X, q.Y) x2y2 := ff.NewElement().Add(o.X, o.Y) x3 := ff.NewElement().Mul(x1y1, x2y2) x3.Sub(x3, c) x3.Sub(x3, d) x3.Mul(x3, a) x3.Mul(x3, f) ac := ff.NewElement().Mul(Aff, c) y3 := ff.NewElement().Sub(d, ac) y3.Mul(y3, a) y3.Mul(y3, g) z3 := ff.NewElement().Mul(f, g) p.X = x3 p.Y = y3 p.Z = z3 return p } // Point represents a point of the babyjub curve. type Point struct { X *big.Int Y *big.Int } // NewPoint creates a new Point. func NewPoint() *Point { return &Point{X: big.NewInt(0), Y: big.NewInt(1)} } // Set copies a Point c into the Point p func (p *Point) Set(c *Point) *Point { p.X.Set(c.X) p.Y.Set(c.Y) return p } // Projective returns a PointProjective from the Point func (p *Point) Projective() *PointProjective { return &PointProjective{ X: ff.NewElement().SetBigInt(p.X), Y: ff.NewElement().SetBigInt(p.Y), Z: ff.NewElement().SetOne(), } } // Mul multiplies the Point q by the scalar s and stores the result in p, // which is also returned. func (p *Point) Mul(s *big.Int, q *Point) *Point { resProj := &PointProjective{ X: ff.NewElement().SetZero(), Y: ff.NewElement().SetOne(), Z: ff.NewElement().SetOne(), } exp := q.Projective() for i := 0; i < s.BitLen(); i++ { if s.Bit(i) == 1 { resProj.Add(resProj, exp) } exp = exp.Add(exp, exp) } p = resProj.Affine() return p } // InCurve returns true when the Point p is in the babyjub curve. func (p *Point) InCurve() bool { x2 := new(big.Int).Set(p.X) x2.Mul(x2, x2) x2.Mod(x2, constants.Q) y2 := new(big.Int).Set(p.Y) y2.Mul(y2, y2) y2.Mod(y2, constants.Q) a := new(big.Int).Mul(A, x2) a.Add(a, y2) a.Mod(a, constants.Q) b := new(big.Int).Set(D) b.Mul(b, x2) b.Mul(b, y2) b.Add(constants.One, b) b.Mod(b, constants.Q) return a.Cmp(b) == 0 } // InSubGroup returns true when the Point p is in the subgroup of the babyjub // curve. func (p *Point) InSubGroup() bool { if !p.InCurve() { return false } res := NewPoint().Mul(SubOrder, p) return (res.X.Cmp(constants.Zero) == 0) && (res.Y.Cmp(constants.One) == 0) } // PointCoordSign returns the sign of the curve point coordinate. It returns // false if the sign is positive and false if the sign is negative. func PointCoordSign(c *big.Int) bool { return c.Cmp(new(big.Int).Rsh(constants.Q, 1)) == 1 } // PackSignY packs the given sign and the coordinate Y of a point into a 32 // byte array. This method does not check that the values belong to a valid // Point in the curve. func PackSignY(sign bool, y *big.Int) [32]byte { leBuf := utils.BigIntLEBytes(y) if sign { leBuf[31] |= 0x80 //nolint:gomnd } return leBuf } // UnpackSignY returns the sign and coordinate Y from a given compressed point. // This method does not check that the Point belongs to the BabyJubJub curve, // thus does not return error in such case. This method is intended to obtain // the sign and the Y coordinate without checking if the point belongs to the // curve, if the objective is to uncompress a point, Decompress method should // be used instead. func UnpackSignY(leBuf [32]byte) (bool, *big.Int) { sign := false y := big.NewInt(0) if (leBuf[31] & 0x80) != 0x00 { //nolint:gomnd sign = true leBuf[31] &= 0x7F //nolint:gomnd } utils.SetBigIntFromLEBytes(y, leBuf[:]) return sign, y } // Compress the point into a 32 byte array that contains the y coordinate in // little endian and the sign of the x coordinate. func (p *Point) Compress() [32]byte { sign := PointCoordSign(p.X) return PackSignY(sign, p.Y) } // Decompress a compressed Point into p, and also returns the decompressed // Point. Returns error if the compressed Point is invalid. func (p *Point) Decompress(leBuf [32]byte) (*Point, error) { var sign bool sign, p.Y = UnpackSignY(leBuf) return PointFromSignAndY(sign, p.Y) } // PointFromSignAndY returns a Point from a Sign and the Y coordinate func PointFromSignAndY(sign bool, y *big.Int) (*Point, error) { var p Point p.X = big.NewInt(0) p.Y = y if p.Y.Cmp(constants.Q) >= 0 { return nil, fmt.Errorf("p.y >= Q") } y2 := new(big.Int).Mul(p.Y, p.Y) y2.Mod(y2, constants.Q) xa := big.NewInt(1) xa.Sub(xa, y2) // xa == 1 - y^2 xb := new(big.Int).Mul(D, y2) xb.Mod(xb, constants.Q) xb.Sub(A, xb) // xb = A - d * y^2 if xb.Cmp(big.NewInt(0)) == 0 { return nil, fmt.Errorf("division by 0") } xb.ModInverse(xb, constants.Q) p.X.Mul(xa, xb) // xa / xb p.X.Mod(p.X, constants.Q) noSqrt := p.X.ModSqrt(p.X, constants.Q) if noSqrt == nil { return nil, fmt.Errorf("x is not a square mod q") } if (sign && !PointCoordSign(p.X)) || (!sign && PointCoordSign(p.X)) { p.X.Mul(p.X, constants.MinusOne) } p.X.Mod(p.X, constants.Q) return &p, nil }