// Copyright 2020 ConsenSys AG
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
// Code generated by goff (v0.2.0) DO NOT EDIT
|
|
|
|
// Package ff contains field arithmetic operations
|
|
package ff
|
|
|
|
// /!\ WARNING /!\
|
|
// this code has not been audited and is provided as-is. In particular,
|
|
// there is no security guarantees such as constant time implementation
|
|
// or side-channel attack resistance
|
|
// /!\ WARNING /!\
|
|
|
|
import (
|
|
"crypto/rand"
|
|
"encoding/binary"
|
|
"io"
|
|
"math/big"
|
|
"math/bits"
|
|
"strconv"
|
|
"sync"
|
|
"unsafe"
|
|
)
|
|
|
|
// Element represents a field element stored on 4 words (uint64)
|
|
// Element are assumed to be in Montgomery form in all methods
|
|
// field modulus q =
|
|
//
|
|
// 21888242871839275222246405745257275088548364400416034343698204186575808495617
|
|
type Element [4]uint64
|
|
|
|
// ElementLimbs number of 64 bits words needed to represent Element
|
|
const ElementLimbs = 4
|
|
|
|
// ElementBits number bits needed to represent Element
|
|
const ElementBits = 254
|
|
|
|
// SetUint64 z = v, sets z LSB to v (non-Montgomery form) and convert z to Montgomery form
|
|
func (z *Element) SetUint64(v uint64) *Element {
|
|
z[0] = v
|
|
z[1] = 0
|
|
z[2] = 0
|
|
z[3] = 0
|
|
return z.ToMont()
|
|
}
|
|
|
|
// Set z = x
|
|
func (z *Element) Set(x *Element) *Element {
|
|
z[0] = x[0]
|
|
z[1] = x[1]
|
|
z[2] = x[2]
|
|
z[3] = x[3]
|
|
return z
|
|
}
|
|
|
|
// SetZero z = 0
|
|
func (z *Element) SetZero() *Element {
|
|
z[0] = 0
|
|
z[1] = 0
|
|
z[2] = 0
|
|
z[3] = 0
|
|
return z
|
|
}
|
|
|
|
// SetOne z = 1 (in Montgomery form)
|
|
func (z *Element) SetOne() *Element {
|
|
z[0] = 12436184717236109307
|
|
z[1] = 3962172157175319849
|
|
z[2] = 7381016538464732718
|
|
z[3] = 1011752739694698287
|
|
return z
|
|
}
|
|
|
|
// Neg z = q - x
|
|
func (z *Element) Neg(x *Element) *Element {
|
|
if x.IsZero() {
|
|
return z.SetZero()
|
|
}
|
|
var borrow uint64
|
|
z[0], borrow = bits.Sub64(4891460686036598785, x[0], 0)
|
|
z[1], borrow = bits.Sub64(2896914383306846353, x[1], borrow)
|
|
z[2], borrow = bits.Sub64(13281191951274694749, x[2], borrow)
|
|
z[3], _ = bits.Sub64(3486998266802970665, x[3], borrow)
|
|
return z
|
|
}
|
|
|
|
// Div z = x*y^-1 mod q
|
|
func (z *Element) Div(x, y *Element) *Element {
|
|
var yInv Element
|
|
yInv.Inverse(y)
|
|
z.Mul(x, &yInv)
|
|
return z
|
|
}
|
|
|
|
// Equal returns z == x
|
|
func (z *Element) Equal(x *Element) bool {
|
|
return (z[3] == x[3]) && (z[2] == x[2]) && (z[1] == x[1]) && (z[0] == x[0])
|
|
}
|
|
|
|
// IsZero returns z == 0
|
|
func (z *Element) IsZero() bool {
|
|
return (z[3] | z[2] | z[1] | z[0]) == 0
|
|
}
|
|
|
|
// field modulus stored as big.Int
|
|
var _elementModulusBigInt big.Int
|
|
var onceelementModulus sync.Once
|
|
|
|
func elementModulusBigInt() *big.Int {
|
|
onceelementModulus.Do(func() {
|
|
_elementModulusBigInt.SetString("21888242871839275222246405745257275088548364400416034343698204186575808495617", 10)
|
|
})
|
|
return &_elementModulusBigInt
|
|
}
|
|
|
|
// Inverse z = x^-1 mod q
|
|
// Algorithm 16 in "Efficient Software-Implementation of Finite Fields with Applications to Cryptography"
|
|
// if x == 0, sets and returns z = x
|
|
func (z *Element) Inverse(x *Element) *Element {
|
|
if x.IsZero() {
|
|
return z.Set(x)
|
|
}
|
|
|
|
// initialize u = q
|
|
var u = Element{
|
|
4891460686036598785,
|
|
2896914383306846353,
|
|
13281191951274694749,
|
|
3486998266802970665,
|
|
}
|
|
|
|
// initialize s = r^2
|
|
var s = Element{
|
|
1997599621687373223,
|
|
6052339484930628067,
|
|
10108755138030829701,
|
|
150537098327114917,
|
|
}
|
|
|
|
// r = 0
|
|
r := Element{}
|
|
|
|
v := *x
|
|
|
|
var carry, borrow, t, t2 uint64
|
|
var bigger, uIsOne, vIsOne bool
|
|
|
|
for !uIsOne && !vIsOne {
|
|
for v[0]&1 == 0 {
|
|
|
|
// v = v >> 1
|
|
t2 = v[3] << 63
|
|
v[3] >>= 1
|
|
t = t2
|
|
t2 = v[2] << 63
|
|
v[2] = (v[2] >> 1) | t
|
|
t = t2
|
|
t2 = v[1] << 63
|
|
v[1] = (v[1] >> 1) | t
|
|
t = t2
|
|
v[0] = (v[0] >> 1) | t
|
|
|
|
if s[0]&1 == 1 {
|
|
|
|
// s = s + q
|
|
s[0], carry = bits.Add64(s[0], 4891460686036598785, 0)
|
|
s[1], carry = bits.Add64(s[1], 2896914383306846353, carry)
|
|
s[2], carry = bits.Add64(s[2], 13281191951274694749, carry)
|
|
s[3], _ = bits.Add64(s[3], 3486998266802970665, carry)
|
|
|
|
}
|
|
|
|
// s = s >> 1
|
|
t2 = s[3] << 63
|
|
s[3] >>= 1
|
|
t = t2
|
|
t2 = s[2] << 63
|
|
s[2] = (s[2] >> 1) | t
|
|
t = t2
|
|
t2 = s[1] << 63
|
|
s[1] = (s[1] >> 1) | t
|
|
t = t2
|
|
s[0] = (s[0] >> 1) | t
|
|
|
|
}
|
|
for u[0]&1 == 0 {
|
|
|
|
// u = u >> 1
|
|
t2 = u[3] << 63
|
|
u[3] >>= 1
|
|
t = t2
|
|
t2 = u[2] << 63
|
|
u[2] = (u[2] >> 1) | t
|
|
t = t2
|
|
t2 = u[1] << 63
|
|
u[1] = (u[1] >> 1) | t
|
|
t = t2
|
|
u[0] = (u[0] >> 1) | t
|
|
|
|
if r[0]&1 == 1 {
|
|
|
|
// r = r + q
|
|
r[0], carry = bits.Add64(r[0], 4891460686036598785, 0)
|
|
r[1], carry = bits.Add64(r[1], 2896914383306846353, carry)
|
|
r[2], carry = bits.Add64(r[2], 13281191951274694749, carry)
|
|
r[3], _ = bits.Add64(r[3], 3486998266802970665, carry)
|
|
|
|
}
|
|
|
|
// r = r >> 1
|
|
t2 = r[3] << 63
|
|
r[3] >>= 1
|
|
t = t2
|
|
t2 = r[2] << 63
|
|
r[2] = (r[2] >> 1) | t
|
|
t = t2
|
|
t2 = r[1] << 63
|
|
r[1] = (r[1] >> 1) | t
|
|
t = t2
|
|
r[0] = (r[0] >> 1) | t
|
|
|
|
}
|
|
|
|
// v >= u
|
|
bigger = !(v[3] < u[3] || (v[3] == u[3] && (v[2] < u[2] || (v[2] == u[2] && (v[1] < u[1] || (v[1] == u[1] && (v[0] < u[0])))))))
|
|
|
|
if bigger {
|
|
|
|
// v = v - u
|
|
v[0], borrow = bits.Sub64(v[0], u[0], 0)
|
|
v[1], borrow = bits.Sub64(v[1], u[1], borrow)
|
|
v[2], borrow = bits.Sub64(v[2], u[2], borrow)
|
|
v[3], _ = bits.Sub64(v[3], u[3], borrow)
|
|
|
|
// r >= s
|
|
bigger = !(r[3] < s[3] || (r[3] == s[3] && (r[2] < s[2] || (r[2] == s[2] && (r[1] < s[1] || (r[1] == s[1] && (r[0] < s[0])))))))
|
|
|
|
if bigger {
|
|
|
|
// s = s + q
|
|
s[0], carry = bits.Add64(s[0], 4891460686036598785, 0)
|
|
s[1], carry = bits.Add64(s[1], 2896914383306846353, carry)
|
|
s[2], carry = bits.Add64(s[2], 13281191951274694749, carry)
|
|
s[3], _ = bits.Add64(s[3], 3486998266802970665, carry)
|
|
|
|
}
|
|
|
|
// s = s - r
|
|
s[0], borrow = bits.Sub64(s[0], r[0], 0)
|
|
s[1], borrow = bits.Sub64(s[1], r[1], borrow)
|
|
s[2], borrow = bits.Sub64(s[2], r[2], borrow)
|
|
s[3], _ = bits.Sub64(s[3], r[3], borrow)
|
|
|
|
} else {
|
|
|
|
// u = u - v
|
|
u[0], borrow = bits.Sub64(u[0], v[0], 0)
|
|
u[1], borrow = bits.Sub64(u[1], v[1], borrow)
|
|
u[2], borrow = bits.Sub64(u[2], v[2], borrow)
|
|
u[3], _ = bits.Sub64(u[3], v[3], borrow)
|
|
|
|
// s >= r
|
|
bigger = !(s[3] < r[3] || (s[3] == r[3] && (s[2] < r[2] || (s[2] == r[2] && (s[1] < r[1] || (s[1] == r[1] && (s[0] < r[0])))))))
|
|
|
|
if bigger {
|
|
|
|
// r = r + q
|
|
r[0], carry = bits.Add64(r[0], 4891460686036598785, 0)
|
|
r[1], carry = bits.Add64(r[1], 2896914383306846353, carry)
|
|
r[2], carry = bits.Add64(r[2], 13281191951274694749, carry)
|
|
r[3], _ = bits.Add64(r[3], 3486998266802970665, carry)
|
|
|
|
}
|
|
|
|
// r = r - s
|
|
r[0], borrow = bits.Sub64(r[0], s[0], 0)
|
|
r[1], borrow = bits.Sub64(r[1], s[1], borrow)
|
|
r[2], borrow = bits.Sub64(r[2], s[2], borrow)
|
|
r[3], _ = bits.Sub64(r[3], s[3], borrow)
|
|
|
|
}
|
|
uIsOne = (u[0] == 1) && (u[3]|u[2]|u[1]) == 0
|
|
vIsOne = (v[0] == 1) && (v[3]|v[2]|v[1]) == 0
|
|
}
|
|
|
|
if uIsOne {
|
|
z.Set(&r)
|
|
} else {
|
|
z.Set(&s)
|
|
}
|
|
|
|
return z
|
|
}
|
|
|
|
// SetRandom sets z to a random element < q
|
|
func (z *Element) SetRandom() *Element {
|
|
bytes := make([]byte, 32)
|
|
io.ReadFull(rand.Reader, bytes)
|
|
z[0] = binary.BigEndian.Uint64(bytes[0:8])
|
|
z[1] = binary.BigEndian.Uint64(bytes[8:16])
|
|
z[2] = binary.BigEndian.Uint64(bytes[16:24])
|
|
z[3] = binary.BigEndian.Uint64(bytes[24:32])
|
|
z[3] %= 3486998266802970665
|
|
|
|
// if z > q --> z -= q
|
|
// note: this is NOT constant time
|
|
if !(z[3] < 3486998266802970665 || (z[3] == 3486998266802970665 && (z[2] < 13281191951274694749 || (z[2] == 13281191951274694749 && (z[1] < 2896914383306846353 || (z[1] == 2896914383306846353 && (z[0] < 4891460686036598785))))))) {
|
|
var b uint64
|
|
z[0], b = bits.Sub64(z[0], 4891460686036598785, 0)
|
|
z[1], b = bits.Sub64(z[1], 2896914383306846353, b)
|
|
z[2], b = bits.Sub64(z[2], 13281191951274694749, b)
|
|
z[3], _ = bits.Sub64(z[3], 3486998266802970665, b)
|
|
}
|
|
|
|
return z
|
|
}
|
|
|
|
// One returns 1 (in montgommery form)
|
|
func One() Element {
|
|
var one Element
|
|
one.SetOne()
|
|
return one
|
|
}
|
|
|
|
// FromInterface converts i1 from uint64, int, string, or Element, big.Int into Element
|
|
// panic if provided type is not supported
|
|
func FromInterface(i1 interface{}) Element {
|
|
var val Element
|
|
|
|
switch c1 := i1.(type) {
|
|
case uint64:
|
|
val.SetUint64(c1)
|
|
case int:
|
|
val.SetString(strconv.Itoa(c1))
|
|
case string:
|
|
val.SetString(c1)
|
|
case big.Int:
|
|
val.SetBigInt(&c1)
|
|
case Element:
|
|
val = c1
|
|
case *Element:
|
|
val.Set(c1)
|
|
default:
|
|
panic("invalid type")
|
|
}
|
|
|
|
return val
|
|
}
|
|
|
|
// Add z = x + y mod q
|
|
func (z *Element) Add(x, y *Element) *Element {
|
|
var carry uint64
|
|
|
|
z[0], carry = bits.Add64(x[0], y[0], 0)
|
|
z[1], carry = bits.Add64(x[1], y[1], carry)
|
|
z[2], carry = bits.Add64(x[2], y[2], carry)
|
|
z[3], _ = bits.Add64(x[3], y[3], carry)
|
|
|
|
// if z > q --> z -= q
|
|
// note: this is NOT constant time
|
|
if !(z[3] < 3486998266802970665 || (z[3] == 3486998266802970665 && (z[2] < 13281191951274694749 || (z[2] == 13281191951274694749 && (z[1] < 2896914383306846353 || (z[1] == 2896914383306846353 && (z[0] < 4891460686036598785))))))) {
|
|
var b uint64
|
|
z[0], b = bits.Sub64(z[0], 4891460686036598785, 0)
|
|
z[1], b = bits.Sub64(z[1], 2896914383306846353, b)
|
|
z[2], b = bits.Sub64(z[2], 13281191951274694749, b)
|
|
z[3], _ = bits.Sub64(z[3], 3486998266802970665, b)
|
|
}
|
|
return z
|
|
}
|
|
|
|
// AddAssign z = z + x mod q
|
|
func (z *Element) AddAssign(x *Element) *Element {
|
|
var carry uint64
|
|
|
|
z[0], carry = bits.Add64(z[0], x[0], 0)
|
|
z[1], carry = bits.Add64(z[1], x[1], carry)
|
|
z[2], carry = bits.Add64(z[2], x[2], carry)
|
|
z[3], _ = bits.Add64(z[3], x[3], carry)
|
|
|
|
// if z > q --> z -= q
|
|
// note: this is NOT constant time
|
|
if !(z[3] < 3486998266802970665 || (z[3] == 3486998266802970665 && (z[2] < 13281191951274694749 || (z[2] == 13281191951274694749 && (z[1] < 2896914383306846353 || (z[1] == 2896914383306846353 && (z[0] < 4891460686036598785))))))) {
|
|
var b uint64
|
|
z[0], b = bits.Sub64(z[0], 4891460686036598785, 0)
|
|
z[1], b = bits.Sub64(z[1], 2896914383306846353, b)
|
|
z[2], b = bits.Sub64(z[2], 13281191951274694749, b)
|
|
z[3], _ = bits.Sub64(z[3], 3486998266802970665, b)
|
|
}
|
|
return z
|
|
}
|
|
|
|
// Double z = x + x mod q, aka Lsh 1
|
|
func (z *Element) Double(x *Element) *Element {
|
|
var carry uint64
|
|
|
|
z[0], carry = bits.Add64(x[0], x[0], 0)
|
|
z[1], carry = bits.Add64(x[1], x[1], carry)
|
|
z[2], carry = bits.Add64(x[2], x[2], carry)
|
|
z[3], _ = bits.Add64(x[3], x[3], carry)
|
|
|
|
// if z > q --> z -= q
|
|
// note: this is NOT constant time
|
|
if !(z[3] < 3486998266802970665 || (z[3] == 3486998266802970665 && (z[2] < 13281191951274694749 || (z[2] == 13281191951274694749 && (z[1] < 2896914383306846353 || (z[1] == 2896914383306846353 && (z[0] < 4891460686036598785))))))) {
|
|
var b uint64
|
|
z[0], b = bits.Sub64(z[0], 4891460686036598785, 0)
|
|
z[1], b = bits.Sub64(z[1], 2896914383306846353, b)
|
|
z[2], b = bits.Sub64(z[2], 13281191951274694749, b)
|
|
z[3], _ = bits.Sub64(z[3], 3486998266802970665, b)
|
|
}
|
|
return z
|
|
}
|
|
|
|
// Sub z = x - y mod q
|
|
func (z *Element) Sub(x, y *Element) *Element {
|
|
var b uint64
|
|
z[0], b = bits.Sub64(x[0], y[0], 0)
|
|
z[1], b = bits.Sub64(x[1], y[1], b)
|
|
z[2], b = bits.Sub64(x[2], y[2], b)
|
|
z[3], b = bits.Sub64(x[3], y[3], b)
|
|
if b != 0 {
|
|
var c uint64
|
|
z[0], c = bits.Add64(z[0], 4891460686036598785, 0)
|
|
z[1], c = bits.Add64(z[1], 2896914383306846353, c)
|
|
z[2], c = bits.Add64(z[2], 13281191951274694749, c)
|
|
z[3], _ = bits.Add64(z[3], 3486998266802970665, c)
|
|
}
|
|
return z
|
|
}
|
|
|
|
// SubAssign z = z - x mod q
|
|
func (z *Element) SubAssign(x *Element) *Element {
|
|
var b uint64
|
|
z[0], b = bits.Sub64(z[0], x[0], 0)
|
|
z[1], b = bits.Sub64(z[1], x[1], b)
|
|
z[2], b = bits.Sub64(z[2], x[2], b)
|
|
z[3], b = bits.Sub64(z[3], x[3], b)
|
|
if b != 0 {
|
|
var c uint64
|
|
z[0], c = bits.Add64(z[0], 4891460686036598785, 0)
|
|
z[1], c = bits.Add64(z[1], 2896914383306846353, c)
|
|
z[2], c = bits.Add64(z[2], 13281191951274694749, c)
|
|
z[3], _ = bits.Add64(z[3], 3486998266802970665, c)
|
|
}
|
|
return z
|
|
}
|
|
|
|
// Exp z = x^exponent mod q
|
|
// (not optimized)
|
|
// exponent (non-montgomery form) is ordered from least significant word to most significant word
|
|
func (z *Element) Exp(x Element, exponent ...uint64) *Element {
|
|
r := 0
|
|
msb := 0
|
|
for i := len(exponent) - 1; i >= 0; i-- {
|
|
if exponent[i] == 0 {
|
|
r++
|
|
} else {
|
|
msb = (i * 64) + bits.Len64(exponent[i])
|
|
break
|
|
}
|
|
}
|
|
exponent = exponent[:len(exponent)-r]
|
|
if len(exponent) == 0 {
|
|
return z.SetOne()
|
|
}
|
|
|
|
z.Set(&x)
|
|
|
|
l := msb - 2
|
|
for i := l; i >= 0; i-- {
|
|
z.Square(z)
|
|
if exponent[i/64]&(1<<uint(i%64)) != 0 {
|
|
z.MulAssign(&x)
|
|
}
|
|
}
|
|
return z
|
|
}
|
|
|
|
// FromMont converts z in place (i.e. mutates) from Montgomery to regular representation
|
|
// sets and returns z = z * 1
|
|
func (z *Element) FromMont() *Element {
|
|
|
|
// the following lines implement z = z * 1
|
|
// with a modified CIOS montgomery multiplication
|
|
{
|
|
// m = z[0]n'[0] mod W
|
|
m := z[0] * 14042775128853446655
|
|
C := madd0(m, 4891460686036598785, z[0])
|
|
C, z[0] = madd2(m, 2896914383306846353, z[1], C)
|
|
C, z[1] = madd2(m, 13281191951274694749, z[2], C)
|
|
C, z[2] = madd2(m, 3486998266802970665, z[3], C)
|
|
z[3] = C
|
|
}
|
|
{
|
|
// m = z[0]n'[0] mod W
|
|
m := z[0] * 14042775128853446655
|
|
C := madd0(m, 4891460686036598785, z[0])
|
|
C, z[0] = madd2(m, 2896914383306846353, z[1], C)
|
|
C, z[1] = madd2(m, 13281191951274694749, z[2], C)
|
|
C, z[2] = madd2(m, 3486998266802970665, z[3], C)
|
|
z[3] = C
|
|
}
|
|
{
|
|
// m = z[0]n'[0] mod W
|
|
m := z[0] * 14042775128853446655
|
|
C := madd0(m, 4891460686036598785, z[0])
|
|
C, z[0] = madd2(m, 2896914383306846353, z[1], C)
|
|
C, z[1] = madd2(m, 13281191951274694749, z[2], C)
|
|
C, z[2] = madd2(m, 3486998266802970665, z[3], C)
|
|
z[3] = C
|
|
}
|
|
{
|
|
// m = z[0]n'[0] mod W
|
|
m := z[0] * 14042775128853446655
|
|
C := madd0(m, 4891460686036598785, z[0])
|
|
C, z[0] = madd2(m, 2896914383306846353, z[1], C)
|
|
C, z[1] = madd2(m, 13281191951274694749, z[2], C)
|
|
C, z[2] = madd2(m, 3486998266802970665, z[3], C)
|
|
z[3] = C
|
|
}
|
|
|
|
// if z > q --> z -= q
|
|
// note: this is NOT constant time
|
|
if !(z[3] < 3486998266802970665 || (z[3] == 3486998266802970665 && (z[2] < 13281191951274694749 || (z[2] == 13281191951274694749 && (z[1] < 2896914383306846353 || (z[1] == 2896914383306846353 && (z[0] < 4891460686036598785))))))) {
|
|
var b uint64
|
|
z[0], b = bits.Sub64(z[0], 4891460686036598785, 0)
|
|
z[1], b = bits.Sub64(z[1], 2896914383306846353, b)
|
|
z[2], b = bits.Sub64(z[2], 13281191951274694749, b)
|
|
z[3], _ = bits.Sub64(z[3], 3486998266802970665, b)
|
|
}
|
|
return z
|
|
}
|
|
|
|
// ToMont converts z to Montgomery form
|
|
// sets and returns z = z * r^2
|
|
func (z *Element) ToMont() *Element {
|
|
var rSquare = Element{
|
|
1997599621687373223,
|
|
6052339484930628067,
|
|
10108755138030829701,
|
|
150537098327114917,
|
|
}
|
|
return z.MulAssign(&rSquare)
|
|
}
|
|
|
|
// ToRegular returns z in regular form (doesn't mutate z)
|
|
func (z Element) ToRegular() Element {
|
|
return *z.FromMont()
|
|
}
|
|
|
|
// String returns the string form of an Element in Montgomery form
|
|
func (z *Element) String() string {
|
|
var _z big.Int
|
|
return z.ToBigIntRegular(&_z).String()
|
|
}
|
|
|
|
// ToBigInt returns z as a big.Int in Montgomery form
|
|
func (z *Element) ToBigInt(res *big.Int) *big.Int {
|
|
if bits.UintSize == 64 {
|
|
bits := (*[4]big.Word)(unsafe.Pointer(z))
|
|
return res.SetBits(bits[:])
|
|
} else {
|
|
var bits [8]big.Word
|
|
for i := 0; i < len(z); i++ {
|
|
bits[i*2] = big.Word(z[i])
|
|
bits[i*2+1] = big.Word(z[i] >> 32)
|
|
}
|
|
return res.SetBits(bits[:])
|
|
}
|
|
}
|
|
|
|
// ToBigIntRegular returns z as a big.Int in regular form
|
|
func (z Element) ToBigIntRegular(res *big.Int) *big.Int {
|
|
z.FromMont()
|
|
if bits.UintSize == 64 {
|
|
bits := (*[4]big.Word)(unsafe.Pointer(&z))
|
|
return res.SetBits(bits[:])
|
|
} else {
|
|
var bits [8]big.Word
|
|
for i := 0; i < len(z); i++ {
|
|
bits[i*2] = big.Word(z[i])
|
|
bits[i*2+1] = big.Word(z[i] >> 32)
|
|
}
|
|
return res.SetBits(bits[:])
|
|
}
|
|
}
|
|
|
|
// SetBigInt sets z to v (regular form) and returns z in Montgomery form
|
|
func (z *Element) SetBigInt(v *big.Int) *Element {
|
|
z.SetZero()
|
|
|
|
zero := big.NewInt(0)
|
|
q := elementModulusBigInt()
|
|
|
|
// fast path
|
|
c := v.Cmp(q)
|
|
if c == 0 {
|
|
return z
|
|
} else if c != 1 && v.Cmp(zero) != -1 {
|
|
// v should
|
|
vBits := v.Bits()
|
|
for i := 0; i < len(vBits); i++ {
|
|
z[i] = uint64(vBits[i])
|
|
}
|
|
return z.ToMont()
|
|
}
|
|
|
|
// copy input
|
|
vv := new(big.Int).Set(v)
|
|
|
|
// while v < 0, v+=q
|
|
for vv.Cmp(zero) == -1 {
|
|
vv.Add(vv, q)
|
|
}
|
|
// while v > q, v-=q
|
|
for vv.Cmp(q) == 1 {
|
|
vv.Sub(vv, q)
|
|
}
|
|
// if v == q, return 0
|
|
if vv.Cmp(q) == 0 {
|
|
return z
|
|
}
|
|
// v should
|
|
vBits := vv.Bits()
|
|
if bits.UintSize == 64 {
|
|
for i := 0; i < len(vBits); i++ {
|
|
z[i] = uint64(vBits[i])
|
|
}
|
|
} else {
|
|
for i := 0; i < len(vBits); i++ {
|
|
if i%2 == 0 {
|
|
z[i/2] = uint64(vBits[i])
|
|
} else {
|
|
z[i/2] |= uint64(vBits[i]) << 32
|
|
}
|
|
}
|
|
}
|
|
return z.ToMont()
|
|
}
|
|
|
|
// SetString creates a big.Int with s (in base 10) and calls SetBigInt on z
|
|
func (z *Element) SetString(s string) *Element {
|
|
x, ok := new(big.Int).SetString(s, 10)
|
|
if !ok {
|
|
panic("Element.SetString failed -> can't parse number in base10 into a big.Int")
|
|
}
|
|
return z.SetBigInt(x)
|
|
}
|
|
|
|
// Legendre returns the Legendre symbol of z (either +1, -1, or 0.)
|
|
func (z *Element) Legendre() int {
|
|
var l Element
|
|
// z^((q-1)/2)
|
|
l.Exp(*z,
|
|
11669102379873075200,
|
|
10671829228508198984,
|
|
15863968012492123182,
|
|
1743499133401485332,
|
|
)
|
|
|
|
if l.IsZero() {
|
|
return 0
|
|
}
|
|
|
|
// if l == 1
|
|
if (l[3] == 1011752739694698287) && (l[2] == 7381016538464732718) && (l[1] == 3962172157175319849) && (l[0] == 12436184717236109307) {
|
|
return 1
|
|
}
|
|
return -1
|
|
}
|
|
|
|
// Sqrt z = √x mod q
|
|
// if the square root doesn't exist (x is not a square mod q)
|
|
// Sqrt leaves z unchanged and returns nil
|
|
func (z *Element) Sqrt(x *Element) *Element {
|
|
// q ≡ 1 (mod 4)
|
|
// see modSqrtTonelliShanks in math/big/int.go
|
|
// using https://www.maa.org/sites/default/files/pdf/upload_library/22/Polya/07468342.di020786.02p0470a.pdf
|
|
|
|
var y, b, t, w Element
|
|
// w = x^((s-1)/2))
|
|
w.Exp(*x,
|
|
14829091926808964255,
|
|
867720185306366531,
|
|
688207751544974772,
|
|
6495040407,
|
|
)
|
|
|
|
// y = x^((s+1)/2)) = w * x
|
|
y.Mul(x, &w)
|
|
|
|
// b = x^s = w * w * x = y * x
|
|
b.Mul(&w, &y)
|
|
|
|
// g = nonResidue ^ s
|
|
var g = Element{
|
|
7164790868263648668,
|
|
11685701338293206998,
|
|
6216421865291908056,
|
|
1756667274303109607,
|
|
}
|
|
r := uint64(28)
|
|
|
|
// compute legendre symbol
|
|
// t = x^((q-1)/2) = r-1 squaring of x^s
|
|
t = b
|
|
for i := uint64(0); i < r-1; i++ {
|
|
t.Square(&t)
|
|
}
|
|
if t.IsZero() {
|
|
return z.SetZero()
|
|
}
|
|
if !((t[3] == 1011752739694698287) && (t[2] == 7381016538464732718) && (t[1] == 3962172157175319849) && (t[0] == 12436184717236109307)) {
|
|
// t != 1, we don't have a square root
|
|
return nil
|
|
}
|
|
for {
|
|
var m uint64
|
|
t = b
|
|
|
|
// for t != 1
|
|
for !((t[3] == 1011752739694698287) && (t[2] == 7381016538464732718) && (t[1] == 3962172157175319849) && (t[0] == 12436184717236109307)) {
|
|
t.Square(&t)
|
|
m++
|
|
}
|
|
|
|
if m == 0 {
|
|
return z.Set(&y)
|
|
}
|
|
// t = g^(2^(r-m-1)) mod q
|
|
ge := int(r - m - 1)
|
|
t = g
|
|
for ge > 0 {
|
|
t.Square(&t)
|
|
ge--
|
|
}
|
|
|
|
g.Square(&t)
|
|
y.MulAssign(&t)
|
|
b.MulAssign(&g)
|
|
r = m
|
|
}
|
|
}
|