// Copyright 2020 ConsenSys Software Inc.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
// Code generated by consensys/gnark-crypto DO NOT EDIT
|
|
|
|
package ffg
|
|
|
|
// /!\ WARNING /!\
|
|
// this code has not been audited and is provided as-is. In particular,
|
|
// there is no security guarantees such as constant time implementation
|
|
// or side-channel attack resistance
|
|
// /!\ WARNING /!\
|
|
|
|
import (
|
|
"crypto/rand"
|
|
"encoding/binary"
|
|
"errors"
|
|
"io"
|
|
"math/big"
|
|
"math/bits"
|
|
"reflect"
|
|
"strconv"
|
|
"sync"
|
|
)
|
|
|
|
// Element represents a field element stored on 1 words (uint64)
|
|
// Element are assumed to be in Montgomery form in all methods
|
|
// field modulus q =
|
|
//
|
|
// 18446744069414584321
|
|
type Element [1]uint64
|
|
|
|
// Limbs number of 64 bits words needed to represent Element
|
|
const Limbs = 1
|
|
|
|
// Bits number bits needed to represent Element
|
|
const Bits = 64
|
|
|
|
// Bytes number bytes needed to represent Element
|
|
const Bytes = Limbs * 8
|
|
|
|
// field modulus stored as big.Int
|
|
var _modulus big.Int
|
|
|
|
// Modulus returns q as a big.Int
|
|
// q =
|
|
//
|
|
// 18446744069414584321
|
|
func Modulus() *big.Int {
|
|
return new(big.Int).Set(&_modulus)
|
|
}
|
|
|
|
// q (modulus)
|
|
var qElement = Element{
|
|
18446744069414584321,
|
|
}
|
|
|
|
// rSquare
|
|
var rSquare = Element{
|
|
18446744065119617025,
|
|
}
|
|
|
|
var bigIntPool = sync.Pool{
|
|
New: func() interface{} {
|
|
return new(big.Int)
|
|
},
|
|
}
|
|
|
|
func init() {
|
|
_modulus.SetString("18446744069414584321", 10)
|
|
}
|
|
|
|
// NewElement returns a new Element
|
|
func NewElement() *Element {
|
|
return &Element{}
|
|
}
|
|
|
|
// NewElementFromUint64 returns a new Element from a uint64 value
|
|
//
|
|
// it is equivalent to
|
|
// var v NewElement
|
|
// v.SetUint64(...)
|
|
func NewElementFromUint64(v uint64) *Element {
|
|
z := Element{v}
|
|
z.Mul(&z, &rSquare)
|
|
return &z
|
|
}
|
|
|
|
// SetUint64 z = v, sets z LSB to v (non-Montgomery form) and convert z to Montgomery form
|
|
func (z *Element) SetUint64(v uint64) *Element {
|
|
*z = Element{v}
|
|
return z.Mul(z, &rSquare) // z.ToMont()
|
|
}
|
|
|
|
// Set z = x
|
|
func (z *Element) Set(x *Element) *Element {
|
|
z[0] = x[0]
|
|
return z
|
|
}
|
|
|
|
// SetInterface converts provided interface into Element
|
|
// returns an error if provided type is not supported
|
|
// supported types: Element, *Element, uint64, int, string (interpreted as base10 integer),
|
|
// *big.Int, big.Int, []byte
|
|
func (z *Element) SetInterface(i1 interface{}) (*Element, error) {
|
|
switch c1 := i1.(type) {
|
|
case Element:
|
|
return z.Set(&c1), nil
|
|
case *Element:
|
|
return z.Set(c1), nil
|
|
case uint64:
|
|
return z.SetUint64(c1), nil
|
|
case int:
|
|
return z.SetString(strconv.Itoa(c1)), nil
|
|
case string:
|
|
return z.SetString(c1), nil
|
|
case *big.Int:
|
|
return z.SetBigInt(c1), nil
|
|
case big.Int:
|
|
return z.SetBigInt(&c1), nil
|
|
case []byte:
|
|
return z.SetBytes(c1), nil
|
|
default:
|
|
return nil, errors.New("can't set ffg.Element from type " + reflect.TypeOf(i1).String())
|
|
}
|
|
}
|
|
|
|
// SetZero z = 0
|
|
func (z *Element) SetZero() *Element {
|
|
z[0] = 0
|
|
return z
|
|
}
|
|
|
|
// SetOne z = 1 (in Montgomery form)
|
|
func (z *Element) SetOne() *Element {
|
|
z[0] = 4294967295
|
|
return z
|
|
}
|
|
|
|
// Div z = x*y^-1 mod q
|
|
func (z *Element) Div(x, y *Element) *Element {
|
|
var yInv Element
|
|
yInv.Inverse(y)
|
|
z.Mul(x, &yInv)
|
|
return z
|
|
}
|
|
|
|
// Bit returns the i'th bit, with lsb == bit 0.
|
|
// It is the responsability of the caller to convert from Montgomery to Regular form if needed
|
|
func (z *Element) Bit(i uint64) uint64 {
|
|
j := i / 64
|
|
if j >= 1 {
|
|
return 0
|
|
}
|
|
return uint64(z[j] >> (i % 64) & 1)
|
|
}
|
|
|
|
// Equal returns z == x
|
|
func (z *Element) Equal(x *Element) bool {
|
|
return (z[0] == x[0])
|
|
}
|
|
|
|
// IsZero returns z == 0
|
|
func (z *Element) IsZero() bool {
|
|
return (z[0]) == 0
|
|
}
|
|
|
|
// IsUint64 returns true if z[0] >= 0 and all other words are 0
|
|
func (z *Element) IsUint64() bool {
|
|
return true
|
|
}
|
|
|
|
// Cmp compares (lexicographic order) z and x and returns:
|
|
//
|
|
// -1 if z < x
|
|
// 0 if z == x
|
|
// +1 if z > x
|
|
//
|
|
func (z *Element) Cmp(x *Element) int {
|
|
_z := *z
|
|
_x := *x
|
|
_z.FromMont()
|
|
_x.FromMont()
|
|
if _z[0] > _x[0] {
|
|
return 1
|
|
} else if _z[0] < _x[0] {
|
|
return -1
|
|
}
|
|
return 0
|
|
}
|
|
|
|
// LexicographicallyLargest returns true if this element is strictly lexicographically
|
|
// larger than its negation, false otherwise
|
|
func (z *Element) LexicographicallyLargest() bool {
|
|
// adapted from github.com/zkcrypto/bls12_381
|
|
// we check if the element is larger than (q-1) / 2
|
|
// if z - (((q -1) / 2) + 1) have no underflow, then z > (q-1) / 2
|
|
|
|
_z := *z
|
|
_z.FromMont()
|
|
|
|
var b uint64
|
|
_, b = bits.Sub64(_z[0], 9223372034707292161, 0)
|
|
|
|
return b == 0
|
|
}
|
|
|
|
// SetRandom sets z to a random element < q
|
|
func (z *Element) SetRandom() (*Element, error) {
|
|
var bytes [8]byte
|
|
if _, err := io.ReadFull(rand.Reader, bytes[:]); err != nil {
|
|
return nil, err
|
|
}
|
|
z[0] = binary.BigEndian.Uint64(bytes[0:8])
|
|
z[0] %= 18446744069414584321
|
|
|
|
// if z > q --> z -= q
|
|
// note: this is NOT constant time
|
|
if !(z[0] < 18446744069414584321) {
|
|
z[0], _ = bits.Sub64(z[0], 18446744069414584321, 0)
|
|
}
|
|
|
|
return z, nil
|
|
}
|
|
|
|
// One returns 1 (in montgommery form)
|
|
func One() Element {
|
|
var one Element
|
|
one.SetOne()
|
|
return one
|
|
}
|
|
|
|
// Halve sets z to z / 2 (mod p)
|
|
func (z *Element) Halve() {
|
|
var twoInv Element
|
|
twoInv.SetOne().Double(&twoInv).Inverse(&twoInv)
|
|
z.Mul(z, &twoInv)
|
|
|
|
}
|
|
|
|
// API with assembly impl
|
|
|
|
// Mul z = x * y mod q
|
|
// see https://hackmd.io/@zkteam/modular_multiplication
|
|
func (z *Element) Mul(x, y *Element) *Element {
|
|
mul(z, x, y)
|
|
return z
|
|
}
|
|
|
|
// Square z = x * x mod q
|
|
// see https://hackmd.io/@zkteam/modular_multiplication
|
|
func (z *Element) Square(x *Element) *Element {
|
|
mul(z, x, x)
|
|
return z
|
|
}
|
|
|
|
// FromMont converts z in place (i.e. mutates) from Montgomery to regular representation
|
|
// sets and returns z = z * 1
|
|
func (z *Element) FromMont() *Element {
|
|
fromMont(z)
|
|
return z
|
|
}
|
|
|
|
// Add z = x + y mod q
|
|
func (z *Element) Add(x, y *Element) *Element {
|
|
add(z, x, y)
|
|
return z
|
|
}
|
|
|
|
// Double z = x + x mod q, aka Lsh 1
|
|
func (z *Element) Double(x *Element) *Element {
|
|
double(z, x)
|
|
return z
|
|
}
|
|
|
|
// Sub z = x - y mod q
|
|
func (z *Element) Sub(x, y *Element) *Element {
|
|
sub(z, x, y)
|
|
return z
|
|
}
|
|
|
|
// Neg z = q - x
|
|
func (z *Element) Neg(x *Element) *Element {
|
|
neg(z, x)
|
|
return z
|
|
}
|
|
|
|
// Generic (no ADX instructions, no AMD64) versions of multiplication and squaring algorithms
|
|
|
|
func _mulGeneric(z, x, y *Element) {
|
|
|
|
var t [2]uint64
|
|
var D uint64
|
|
var m, C uint64
|
|
// -----------------------------------
|
|
// First loop
|
|
|
|
C, t[0] = bits.Mul64(y[0], x[0])
|
|
|
|
t[1], D = bits.Add64(t[1], C, 0)
|
|
|
|
// m = t[0]n'[0] mod W
|
|
m = t[0] * 18446744069414584319
|
|
|
|
// -----------------------------------
|
|
// Second loop
|
|
C = madd0(m, 18446744069414584321, t[0])
|
|
|
|
t[0], C = bits.Add64(t[1], C, 0)
|
|
t[1], _ = bits.Add64(0, D, C)
|
|
|
|
if t[1] != 0 {
|
|
// we need to reduce, we have a result on 2 words
|
|
z[0], _ = bits.Sub64(t[0], 18446744069414584321, 0)
|
|
|
|
return
|
|
|
|
}
|
|
|
|
// copy t into z
|
|
z[0] = t[0]
|
|
|
|
// if z > q --> z -= q
|
|
// note: this is NOT constant time
|
|
if !(z[0] < 18446744069414584321) {
|
|
z[0], _ = bits.Sub64(z[0], 18446744069414584321, 0)
|
|
}
|
|
}
|
|
|
|
func _fromMontGeneric(z *Element) {
|
|
// the following lines implement z = z * 1
|
|
// with a modified CIOS montgomery multiplication
|
|
{
|
|
// m = z[0]n'[0] mod W
|
|
m := z[0] * 18446744069414584319
|
|
C := madd0(m, 18446744069414584321, z[0])
|
|
z[0] = C
|
|
}
|
|
|
|
// if z > q --> z -= q
|
|
// note: this is NOT constant time
|
|
if !(z[0] < 18446744069414584321) {
|
|
z[0], _ = bits.Sub64(z[0], 18446744069414584321, 0)
|
|
}
|
|
}
|
|
|
|
func _addGeneric(z, x, y *Element) {
|
|
var carry uint64
|
|
|
|
z[0], carry = bits.Add64(x[0], y[0], 0)
|
|
// if we overflowed the last addition, z >= q
|
|
// if z >= q, z = z - q
|
|
if carry != 0 {
|
|
// we overflowed, so z >= q
|
|
z[0], _ = bits.Sub64(z[0], 18446744069414584321, 0)
|
|
return
|
|
}
|
|
|
|
// if z > q --> z -= q
|
|
// note: this is NOT constant time
|
|
if !(z[0] < 18446744069414584321) {
|
|
z[0], _ = bits.Sub64(z[0], 18446744069414584321, 0)
|
|
}
|
|
}
|
|
|
|
func _doubleGeneric(z, x *Element) {
|
|
var carry uint64
|
|
|
|
z[0], carry = bits.Add64(x[0], x[0], 0)
|
|
// if we overflowed the last addition, z >= q
|
|
// if z >= q, z = z - q
|
|
if carry != 0 {
|
|
// we overflowed, so z >= q
|
|
z[0], _ = bits.Sub64(z[0], 18446744069414584321, 0)
|
|
return
|
|
}
|
|
|
|
// if z > q --> z -= q
|
|
// note: this is NOT constant time
|
|
if !(z[0] < 18446744069414584321) {
|
|
z[0], _ = bits.Sub64(z[0], 18446744069414584321, 0)
|
|
}
|
|
}
|
|
|
|
func _subGeneric(z, x, y *Element) {
|
|
var b uint64
|
|
z[0], b = bits.Sub64(x[0], y[0], 0)
|
|
if b != 0 {
|
|
z[0], _ = bits.Add64(z[0], 18446744069414584321, 0)
|
|
}
|
|
}
|
|
|
|
func _negGeneric(z, x *Element) {
|
|
if x.IsZero() {
|
|
z.SetZero()
|
|
return
|
|
}
|
|
z[0], _ = bits.Sub64(18446744069414584321, x[0], 0)
|
|
}
|
|
|
|
func _reduceGeneric(z *Element) {
|
|
|
|
// if z > q --> z -= q
|
|
// note: this is NOT constant time
|
|
if !(z[0] < 18446744069414584321) {
|
|
z[0], _ = bits.Sub64(z[0], 18446744069414584321, 0)
|
|
}
|
|
}
|
|
|
|
func mulByConstant(z *Element, c uint8) {
|
|
switch c {
|
|
case 0:
|
|
z.SetZero()
|
|
return
|
|
case 1:
|
|
return
|
|
case 2:
|
|
z.Double(z)
|
|
return
|
|
case 3:
|
|
_z := *z
|
|
z.Double(z).Add(z, &_z)
|
|
case 5:
|
|
_z := *z
|
|
z.Double(z).Double(z).Add(z, &_z)
|
|
default:
|
|
var y Element
|
|
y.SetUint64(uint64(c))
|
|
z.Mul(z, &y)
|
|
}
|
|
}
|
|
|
|
// BatchInvert returns a new slice with every element inverted.
|
|
// Uses Montgomery batch inversion trick
|
|
func BatchInvert(a []Element) []Element {
|
|
res := make([]Element, len(a))
|
|
if len(a) == 0 {
|
|
return res
|
|
}
|
|
|
|
zeroes := make([]bool, len(a))
|
|
accumulator := One()
|
|
|
|
for i := 0; i < len(a); i++ {
|
|
if a[i].IsZero() {
|
|
zeroes[i] = true
|
|
continue
|
|
}
|
|
res[i] = accumulator
|
|
accumulator.Mul(&accumulator, &a[i])
|
|
}
|
|
|
|
accumulator.Inverse(&accumulator)
|
|
|
|
for i := len(a) - 1; i >= 0; i-- {
|
|
if zeroes[i] {
|
|
continue
|
|
}
|
|
res[i].Mul(&res[i], &accumulator)
|
|
accumulator.Mul(&accumulator, &a[i])
|
|
}
|
|
|
|
return res
|
|
}
|
|
|
|
func _butterflyGeneric(a, b *Element) {
|
|
t := *a
|
|
a.Add(a, b)
|
|
b.Sub(&t, b)
|
|
}
|
|
|
|
// BitLen returns the minimum number of bits needed to represent z
|
|
// returns 0 if z == 0
|
|
func (z *Element) BitLen() int {
|
|
return bits.Len64(z[0])
|
|
}
|
|
|
|
// Exp z = x^exponent mod q
|
|
func (z *Element) Exp(x Element, exponent *big.Int) *Element {
|
|
var bZero big.Int
|
|
if exponent.Cmp(&bZero) == 0 {
|
|
return z.SetOne()
|
|
}
|
|
|
|
z.Set(&x)
|
|
|
|
for i := exponent.BitLen() - 2; i >= 0; i-- {
|
|
z.Square(z)
|
|
if exponent.Bit(i) == 1 {
|
|
z.Mul(z, &x)
|
|
}
|
|
}
|
|
|
|
return z
|
|
}
|
|
|
|
// ToMont converts z to Montgomery form
|
|
// sets and returns z = z * r^2
|
|
func (z *Element) ToMont() *Element {
|
|
return z.Mul(z, &rSquare)
|
|
}
|
|
|
|
// ToRegular returns z in regular form (doesn't mutate z)
|
|
func (z Element) ToRegular() Element {
|
|
return *z.FromMont()
|
|
}
|
|
|
|
// String returns the string form of an Element in Montgomery form
|
|
func (z *Element) String() string {
|
|
zz := *z
|
|
zz.FromMont()
|
|
if zz.IsUint64() {
|
|
return strconv.FormatUint(zz[0], 10)
|
|
} else {
|
|
var zzNeg Element
|
|
zzNeg.Neg(z)
|
|
zzNeg.FromMont()
|
|
if zzNeg.IsUint64() {
|
|
return "-" + strconv.FormatUint(zzNeg[0], 10)
|
|
}
|
|
}
|
|
vv := bigIntPool.Get().(*big.Int)
|
|
defer bigIntPool.Put(vv)
|
|
return zz.ToBigInt(vv).String()
|
|
}
|
|
|
|
// ToBigInt returns z as a big.Int in Montgomery form
|
|
func (z *Element) ToBigInt(res *big.Int) *big.Int {
|
|
var b [Limbs * 8]byte
|
|
binary.BigEndian.PutUint64(b[0:8], z[0])
|
|
|
|
return res.SetBytes(b[:])
|
|
}
|
|
|
|
// ToBigIntRegular returns z as a big.Int in regular form
|
|
func (z Element) ToBigIntRegular(res *big.Int) *big.Int {
|
|
z.FromMont()
|
|
return z.ToBigInt(res)
|
|
}
|
|
|
|
// ToUint64Regular returns z as a uint64 in regular form
|
|
func (z Element) ToUint64Regular() uint64 {
|
|
z.FromMont()
|
|
return z[0]
|
|
}
|
|
|
|
// Bytes returns the regular (non montgomery) value
|
|
// of z as a big-endian byte array.
|
|
func (z *Element) Bytes() (res [Limbs * 8]byte) {
|
|
_z := z.ToRegular()
|
|
binary.BigEndian.PutUint64(res[0:8], _z[0])
|
|
|
|
return
|
|
}
|
|
|
|
// Marshal returns the regular (non montgomery) value
|
|
// of z as a big-endian byte slice.
|
|
func (z *Element) Marshal() []byte {
|
|
b := z.Bytes()
|
|
return b[:]
|
|
}
|
|
|
|
// SetBytes interprets e as the bytes of a big-endian unsigned integer,
|
|
// sets z to that value (in Montgomery form), and returns z.
|
|
func (z *Element) SetBytes(e []byte) *Element {
|
|
// get a big int from our pool
|
|
vv := bigIntPool.Get().(*big.Int)
|
|
vv.SetBytes(e)
|
|
|
|
// set big int
|
|
z.SetBigInt(vv)
|
|
|
|
// put temporary object back in pool
|
|
bigIntPool.Put(vv)
|
|
|
|
return z
|
|
}
|
|
|
|
// SetBigInt sets z to v (regular form) and returns z in Montgomery form
|
|
func (z *Element) SetBigInt(v *big.Int) *Element {
|
|
z.SetZero()
|
|
|
|
var zero big.Int
|
|
|
|
// fast path
|
|
c := v.Cmp(&_modulus)
|
|
if c == 0 {
|
|
// v == 0
|
|
return z
|
|
} else if c != 1 && v.Cmp(&zero) != -1 {
|
|
// 0 < v < q
|
|
return z.setBigInt(v)
|
|
}
|
|
|
|
// get temporary big int from the pool
|
|
vv := bigIntPool.Get().(*big.Int)
|
|
|
|
// copy input + modular reduction
|
|
vv.Set(v)
|
|
vv.Mod(v, &_modulus)
|
|
|
|
// set big int byte value
|
|
z.setBigInt(vv)
|
|
|
|
// release object into pool
|
|
bigIntPool.Put(vv)
|
|
return z
|
|
}
|
|
|
|
// setBigInt assumes 0 <= v < q
|
|
func (z *Element) setBigInt(v *big.Int) *Element {
|
|
vBits := v.Bits()
|
|
|
|
if bits.UintSize == 64 {
|
|
for i := 0; i < len(vBits); i++ {
|
|
z[i] = uint64(vBits[i])
|
|
}
|
|
} else {
|
|
for i := 0; i < len(vBits); i++ {
|
|
if i%2 == 0 {
|
|
z[i/2] = uint64(vBits[i])
|
|
} else {
|
|
z[i/2] |= uint64(vBits[i]) << 32
|
|
}
|
|
}
|
|
}
|
|
|
|
return z.ToMont()
|
|
}
|
|
|
|
// SetString creates a big.Int with s (in base 10) and calls SetBigInt on z
|
|
func (z *Element) SetString(s string) *Element {
|
|
// get temporary big int from the pool
|
|
vv := bigIntPool.Get().(*big.Int)
|
|
|
|
if _, ok := vv.SetString(s, 10); !ok {
|
|
panic("Element.SetString failed -> can't parse number in base10 into a big.Int")
|
|
}
|
|
z.SetBigInt(vv)
|
|
|
|
// release object into pool
|
|
bigIntPool.Put(vv)
|
|
|
|
return z
|
|
}
|
|
|
|
var (
|
|
_bLegendreExponentElement *big.Int
|
|
_bSqrtExponentElement *big.Int
|
|
)
|
|
|
|
func init() {
|
|
_bLegendreExponentElement, _ = new(big.Int).SetString("7fffffff80000000", 16)
|
|
const sqrtExponentElement = "7fffffff"
|
|
_bSqrtExponentElement, _ = new(big.Int).SetString(sqrtExponentElement, 16)
|
|
}
|
|
|
|
// Legendre returns the Legendre symbol of z (either +1, -1, or 0.)
|
|
func (z *Element) Legendre() int {
|
|
var l Element
|
|
// z^((q-1)/2)
|
|
l.Exp(*z, _bLegendreExponentElement)
|
|
|
|
if l.IsZero() {
|
|
return 0
|
|
}
|
|
|
|
// if l == 1
|
|
if l[0] == 4294967295 {
|
|
return 1
|
|
}
|
|
return -1
|
|
}
|
|
|
|
// Sqrt z = √x mod q
|
|
// if the square root doesn't exist (x is not a square mod q)
|
|
// Sqrt leaves z unchanged and returns nil
|
|
func (z *Element) Sqrt(x *Element) *Element {
|
|
// q ≡ 1 (mod 4)
|
|
// see modSqrtTonelliShanks in math/big/int.go
|
|
// using https://www.maa.org/sites/default/files/pdf/upload_library/22/Polya/07468342.di020786.02p0470a.pdf
|
|
|
|
var y, b, t, w Element
|
|
// w = x^((s-1)/2))
|
|
w.Exp(*x, _bSqrtExponentElement)
|
|
|
|
// y = x^((s+1)/2)) = w * x
|
|
y.Mul(x, &w)
|
|
|
|
// b = x^s = w * w * x = y * x
|
|
b.Mul(&w, &y)
|
|
|
|
// g = nonResidue ^ s
|
|
var g = Element{
|
|
15733474329512464024,
|
|
}
|
|
r := uint64(32)
|
|
|
|
// compute legendre symbol
|
|
// t = x^((q-1)/2) = r-1 squaring of x^s
|
|
t = b
|
|
for i := uint64(0); i < r-1; i++ {
|
|
t.Square(&t)
|
|
}
|
|
if t.IsZero() {
|
|
return z.SetZero()
|
|
}
|
|
if !(t[0] == 4294967295) {
|
|
// t != 1, we don't have a square root
|
|
return nil
|
|
}
|
|
for {
|
|
var m uint64
|
|
t = b
|
|
|
|
// for t != 1
|
|
for !(t[0] == 4294967295) {
|
|
t.Square(&t)
|
|
m++
|
|
}
|
|
|
|
if m == 0 {
|
|
return z.Set(&y)
|
|
}
|
|
// t = g^(2^(r-m-1)) mod q
|
|
ge := int(r - m - 1)
|
|
t = g
|
|
for ge > 0 {
|
|
t.Square(&t)
|
|
ge--
|
|
}
|
|
|
|
g.Square(&t)
|
|
y.Mul(&y, &t)
|
|
b.Mul(&b, &g)
|
|
r = m
|
|
}
|
|
}
|
|
|
|
// Inverse z = x^-1 mod q
|
|
// note: allocates a big.Int (math/big)
|
|
func (z *Element) Inverse(x *Element) *Element {
|
|
var _xNonMont big.Int
|
|
x.ToBigIntRegular(&_xNonMont)
|
|
_xNonMont.ModInverse(&_xNonMont, Modulus())
|
|
z.SetBigInt(&_xNonMont)
|
|
return z
|
|
}
|