You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

240 lines
5.4 KiB

package babyjub
import (
"fmt"
"math/big"
)
// Q is the order of the integer field where the curve point coordinates are (Zq).
var Q *big.Int
// A is one of the babyjub constants.
var A *big.Int
// D is one of the babyjub constants.
var D *big.Int
// Zero is 0.
var Zero *big.Int
// One is 1.
var One *big.Int
// MinusOne is -1.
var MinusOne *big.Int
// Order of the babyjub curve.
var Order *big.Int
// SubOrder is the order of the subgroup of the babyjub curve that contains the
// points that we use.
var SubOrder *big.Int
// B8 is a base point of the babyjub multiplied by 8 to make it a base point of
// the subgroup in the curve.
var B8 *Point
// NewIntFromString creates a new big.Int from a decimal integer encoded as a
// string. It will panic if the string is not a decimal integer.
func NewIntFromString(s string) *big.Int {
v, ok := new(big.Int).SetString(s, 10)
if !ok {
panic(fmt.Sprintf("Bad base 10 string %s", s))
}
return v
}
// init initializes global numbers and the subgroup base.
func init() {
Zero = big.NewInt(0)
One = big.NewInt(1)
MinusOne = big.NewInt(-1)
Q = NewIntFromString(
"21888242871839275222246405745257275088548364400416034343698204186575808495617")
A = NewIntFromString("168700")
D = NewIntFromString("168696")
Order = NewIntFromString(
"21888242871839275222246405745257275088614511777268538073601725287587578984328")
SubOrder = new(big.Int).Rsh(Order, 3)
B8 = NewPoint()
B8.X = NewIntFromString(
"17777552123799933955779906779655732241715742912184938656739573121738514868268")
B8.Y = NewIntFromString(
"2626589144620713026669568689430873010625803728049924121243784502389097019475")
}
// Point represents a point of the babyjub curve.
type Point struct {
X *big.Int
Y *big.Int
}
// NewPoint creates a new Point.
func NewPoint() *Point {
return &Point{X: big.NewInt(0), Y: big.NewInt(1)}
}
// Set copies a Point c into the Point p
func (p *Point) Set(c *Point) *Point {
p.X.Set(c.X)
p.Y.Set(c.Y)
return p
}
// Add adds Point a and b into res
func (res *Point) Add(a *Point, b *Point) *Point {
// x = (a.x * b.y + b.x * a.y) * (1 + D * a.x * b.x * a.y * b.y)^-1 mod q
x1a := new(big.Int).Mul(a.X, b.Y)
x1b := new(big.Int).Mul(b.X, a.Y)
x1a.Add(x1a, x1b) // x1a = a.x * b.y + b.x * a.y
x2 := new(big.Int).Set(D)
x2.Mul(x2, a.X)
x2.Mul(x2, b.X)
x2.Mul(x2, a.Y)
x2.Mul(x2, b.Y)
x2.Add(One, x2)
x2.Mod(x2, Q)
x2.ModInverse(x2, Q) // x2 = (1 + D * a.x * b.x * a.y * b.y)^-1
// y = (a.y * b.y + A * a.x * a.x) * (1 - D * a.x * b.x * a.y * b.y)^-1 mod q
y1a := new(big.Int).Mul(a.Y, b.Y)
y1b := new(big.Int).Set(A)
y1b.Mul(y1b, a.X)
y1b.Mul(y1b, b.X)
y1a.Sub(y1a, y1b) // y1a = a.y * b.y - A * a.x * b.x
y2 := new(big.Int).Set(D)
y2.Mul(y2, a.X)
y2.Mul(y2, b.X)
y2.Mul(y2, a.Y)
y2.Mul(y2, b.Y)
y2.Sub(One, y2)
y2.Mod(y2, Q)
y2.ModInverse(y2, Q) // y2 = (1 - D * a.x * b.x * a.y * b.y)^-1
res.X = x1a.Mul(x1a, x2)
res.X = res.X.Mod(res.X, Q)
res.Y = y1a.Mul(y1a, y2)
res.Y = res.Y.Mod(res.Y, Q)
return res
}
// Mul multiplies the Point p by the scalar s and stores the result in res,
// which is also returned.
func (res *Point) Mul(s *big.Int, p *Point) *Point {
res.X = big.NewInt(0)
res.Y = big.NewInt(1)
exp := NewPoint().Set(p)
for i := 0; i < s.BitLen(); i++ {
if s.Bit(i) == 1 {
res.Add(res, exp)
}
exp.Add(exp, exp)
}
return res
}
// InCurve returns true when the Point p is in the babyjub curve.
func (p *Point) InCurve() bool {
x2 := new(big.Int).Set(p.X)
x2.Mul(x2, x2)
x2.Mod(x2, Q)
y2 := new(big.Int).Set(p.Y)
y2.Mul(y2, y2)
y2.Mod(y2, Q)
a := new(big.Int).Mul(A, x2)
a.Add(a, y2)
a.Mod(a, Q)
b := new(big.Int).Set(D)
b.Mul(b, x2)
b.Mul(b, y2)
b.Add(One, b)
b.Mod(b, Q)
return a.Cmp(b) == 0
}
// InSubGroup returns true when the Point p is in the subgroup of the babyjub
// curve.
func (p *Point) InSubGroup() bool {
if !p.InCurve() {
return false
}
res := NewPoint().Mul(SubOrder, p)
return (res.X.Cmp(Zero) == 0) && (res.Y.Cmp(One) == 0)
}
// PointCoordSign returns the sign of the curve point coordinate. It returns
// false if the sign is positive and false if the sign is negative.
func PointCoordSign(c *big.Int) bool {
if c.Cmp(new(big.Int).Rsh(Q, 1)) == 1 {
return true
}
return false
}
func PackPoint(ay *big.Int, sign bool) [32]byte {
leBuf := BigIntLEBytes(ay)
if sign {
leBuf[31] = leBuf[31] | 0x80
}
return leBuf
}
// Compress the point into a 32 byte array that contains the y coordinate in
// little endian and the sign of the x coordinate.
func (p *Point) Compress() [32]byte {
sign := false
if PointCoordSign(p.X) {
sign = true
}
return PackPoint(p.Y, sign)
}
// Decompress a compressed Point into p, and also returns the decompressed
// Point. Returns error if the compressed Point is invalid.
func (p *Point) Decompress(leBuf [32]byte) (*Point, error) {
sign := false
if (leBuf[31] & 0x80) != 0x00 {
sign = true
leBuf[31] = leBuf[31] & 0x7F
}
SetBigIntFromLEBytes(p.Y, leBuf[:])
if p.Y.Cmp(Q) >= 0 {
return nil, fmt.Errorf("p.y >= Q")
}
y2 := new(big.Int).Mul(p.Y, p.Y)
y2.Mod(y2, Q)
xa := big.NewInt(1)
xa.Sub(xa, y2) // xa == 1 - y^2
xb := new(big.Int).Mul(D, y2)
xb.Mod(xb, Q)
xb.Sub(A, xb) // xb = A - d * y^2
if xb.Cmp(big.NewInt(0)) == 0 {
return nil, fmt.Errorf("division by 0")
}
xb.ModInverse(xb, Q)
p.X.Mul(xa, xb) // xa / xb
p.X.Mod(p.X, Q)
p.X.ModSqrt(p.X, Q)
if (sign && !PointCoordSign(p.X)) || (!sign && PointCoordSign(p.X)) {
p.X.Mul(p.X, MinusOne)
}
p.X.Mod(p.X, Q)
return p, nil
}