package babyjub
|
|
|
|
import (
|
|
"fmt"
|
|
"math/big"
|
|
|
|
"github.com/iden3/go-iden3-crypto/constants"
|
|
"github.com/iden3/go-iden3-crypto/ff"
|
|
"github.com/iden3/go-iden3-crypto/utils"
|
|
)
|
|
|
|
// A is one of the babyjub constants.
|
|
var A *big.Int
|
|
|
|
// Aff is A value in *ff.Element representation
|
|
var Aff *ff.Element
|
|
|
|
// D is one of the babyjub constants.
|
|
var D *big.Int
|
|
|
|
// Dff is D value in *ff.Element representation
|
|
var Dff *ff.Element
|
|
|
|
// Order of the babyjub curve.
|
|
var Order *big.Int
|
|
|
|
// SubOrder is the order of the subgroup of the babyjub curve that contains the
|
|
// points that we use.
|
|
var SubOrder *big.Int
|
|
|
|
// B8 is a base point of the babyjub multiplied by 8 to make it a base point of
|
|
// the subgroup in the curve.
|
|
var B8 *Point
|
|
|
|
// init initializes global numbers and the subgroup base.
|
|
func init() {
|
|
A = utils.NewIntFromString("168700")
|
|
D = utils.NewIntFromString("168696")
|
|
Aff = ff.NewElement().SetBigInt(A)
|
|
Dff = ff.NewElement().SetBigInt(D)
|
|
|
|
Order = utils.NewIntFromString(
|
|
"21888242871839275222246405745257275088614511777268538073601725287587578984328")
|
|
SubOrder = new(big.Int).Rsh(Order, 3)
|
|
|
|
B8 = NewPoint()
|
|
B8.X = utils.NewIntFromString(
|
|
"5299619240641551281634865583518297030282874472190772894086521144482721001553")
|
|
B8.Y = utils.NewIntFromString(
|
|
"16950150798460657717958625567821834550301663161624707787222815936182638968203")
|
|
}
|
|
|
|
// PointProjective is the Point representation in projective coordinates
|
|
type PointProjective struct {
|
|
X *ff.Element
|
|
Y *ff.Element
|
|
Z *ff.Element
|
|
}
|
|
|
|
// NewPointProjective creates a new Point in projective coordinates.
|
|
func NewPointProjective() *PointProjective {
|
|
return &PointProjective{X: ff.NewElement().SetZero(),
|
|
Y: ff.NewElement().SetOne(), Z: ff.NewElement().SetOne()}
|
|
}
|
|
|
|
// Affine returns the Point from the projective representation
|
|
func (p *PointProjective) Affine() *Point {
|
|
if p.Z.Equal(ff.NewElement().SetZero()) {
|
|
return &Point{
|
|
X: big.NewInt(0),
|
|
Y: big.NewInt(0),
|
|
}
|
|
}
|
|
zinv := ff.NewElement().Inverse(p.Z)
|
|
x := ff.NewElement().Mul(p.X, zinv)
|
|
|
|
y := ff.NewElement().Mul(p.Y, zinv)
|
|
xBig := big.NewInt(0)
|
|
x.ToBigIntRegular(xBig)
|
|
yBig := big.NewInt(0)
|
|
y.ToBigIntRegular(yBig)
|
|
return &Point{
|
|
X: xBig,
|
|
Y: yBig,
|
|
}
|
|
}
|
|
|
|
// Add computes the addition of two points in projective coordinates
|
|
// representation
|
|
func (p *PointProjective) Add(q *PointProjective, o *PointProjective) *PointProjective {
|
|
// add-2008-bbjlp
|
|
// https://hyperelliptic.org/EFD/g1p/auto-twisted-projective.html#doubling-dbl-2008-bbjlp
|
|
a := ff.NewElement().Mul(q.Z, o.Z)
|
|
b := ff.NewElement().Square(a)
|
|
c := ff.NewElement().Mul(q.X, o.X)
|
|
d := ff.NewElement().Mul(q.Y, o.Y)
|
|
e := ff.NewElement().Mul(Dff, c)
|
|
e.MulAssign(d)
|
|
f := ff.NewElement().Sub(b, e)
|
|
g := ff.NewElement().Add(b, e)
|
|
x1y1 := ff.NewElement().Add(q.X, q.Y)
|
|
x2y2 := ff.NewElement().Add(o.X, o.Y)
|
|
x3 := ff.NewElement().Mul(x1y1, x2y2)
|
|
x3.SubAssign(c)
|
|
x3.SubAssign(d)
|
|
x3.MulAssign(a)
|
|
x3.MulAssign(f)
|
|
ac := ff.NewElement().Mul(Aff, c)
|
|
y3 := ff.NewElement().Sub(d, ac)
|
|
y3.MulAssign(a)
|
|
y3.MulAssign(g)
|
|
z3 := ff.NewElement().Mul(f, g)
|
|
|
|
p.X = x3
|
|
p.Y = y3
|
|
p.Z = z3
|
|
return p
|
|
}
|
|
|
|
// Point represents a point of the babyjub curve.
|
|
type Point struct {
|
|
X *big.Int
|
|
Y *big.Int
|
|
}
|
|
|
|
// NewPoint creates a new Point.
|
|
func NewPoint() *Point {
|
|
return &Point{X: big.NewInt(0), Y: big.NewInt(1)}
|
|
}
|
|
|
|
// Set copies a Point c into the Point p
|
|
func (p *Point) Set(c *Point) *Point {
|
|
p.X.Set(c.X)
|
|
p.Y.Set(c.Y)
|
|
return p
|
|
}
|
|
|
|
// Projective returns a PointProjective from the Point
|
|
func (p *Point) Projective() *PointProjective {
|
|
return &PointProjective{
|
|
X: ff.NewElement().SetBigInt(p.X),
|
|
Y: ff.NewElement().SetBigInt(p.Y),
|
|
Z: ff.NewElement().SetOne(),
|
|
}
|
|
}
|
|
|
|
// Mul multiplies the Point q by the scalar s and stores the result in p,
|
|
// which is also returned.
|
|
func (p *Point) Mul(s *big.Int, q *Point) *Point {
|
|
resProj := &PointProjective{
|
|
X: ff.NewElement().SetZero(),
|
|
Y: ff.NewElement().SetOne(),
|
|
Z: ff.NewElement().SetOne(),
|
|
}
|
|
exp := q.Projective()
|
|
|
|
for i := 0; i < s.BitLen(); i++ {
|
|
if s.Bit(i) == 1 {
|
|
resProj.Add(resProj, exp)
|
|
}
|
|
exp = exp.Add(exp, exp)
|
|
}
|
|
p = resProj.Affine()
|
|
return p
|
|
}
|
|
|
|
// InCurve returns true when the Point p is in the babyjub curve.
|
|
func (p *Point) InCurve() bool {
|
|
x2 := new(big.Int).Set(p.X)
|
|
x2.Mul(x2, x2)
|
|
x2.Mod(x2, constants.Q)
|
|
|
|
y2 := new(big.Int).Set(p.Y)
|
|
y2.Mul(y2, y2)
|
|
y2.Mod(y2, constants.Q)
|
|
|
|
a := new(big.Int).Mul(A, x2)
|
|
a.Add(a, y2)
|
|
a.Mod(a, constants.Q)
|
|
|
|
b := new(big.Int).Set(D)
|
|
b.Mul(b, x2)
|
|
b.Mul(b, y2)
|
|
b.Add(constants.One, b)
|
|
b.Mod(b, constants.Q)
|
|
|
|
return a.Cmp(b) == 0
|
|
}
|
|
|
|
// InSubGroup returns true when the Point p is in the subgroup of the babyjub
|
|
// curve.
|
|
func (p *Point) InSubGroup() bool {
|
|
if !p.InCurve() {
|
|
return false
|
|
}
|
|
res := NewPoint().Mul(SubOrder, p)
|
|
return (res.X.Cmp(constants.Zero) == 0) && (res.Y.Cmp(constants.One) == 0)
|
|
}
|
|
|
|
// PointCoordSign returns the sign of the curve point coordinate. It returns
|
|
// false if the sign is positive and false if the sign is negative.
|
|
func PointCoordSign(c *big.Int) bool {
|
|
return c.Cmp(new(big.Int).Rsh(constants.Q, 1)) == 1
|
|
}
|
|
|
|
// PackSignY packs the given sign and the coordinate Y of a point into a 32
|
|
// byte array. This method does not check that the values belong to a valid
|
|
// Point in the curve.
|
|
func PackSignY(sign bool, y *big.Int) [32]byte {
|
|
leBuf := utils.BigIntLEBytes(y)
|
|
if sign {
|
|
leBuf[31] = leBuf[31] | 0x80 //nolint:gomnd
|
|
}
|
|
return leBuf
|
|
}
|
|
|
|
// UnpackSignY returns the sign and coordinate Y from a given compressed point.
|
|
// This method does not check that the Point belongs to the BabyJubJub curve,
|
|
// thus does not return error in such case. This method is intended to obtain
|
|
// the sign and the Y coordinate without checking if the point belongs to the
|
|
// curve, if the objective is to uncompress a point, Decompress method should
|
|
// be used instead.
|
|
func UnpackSignY(leBuf [32]byte) (bool, *big.Int) {
|
|
sign := false
|
|
y := big.NewInt(0)
|
|
if (leBuf[31] & 0x80) != 0x00 { //nolint:gomnd
|
|
sign = true
|
|
leBuf[31] = leBuf[31] & 0x7F //nolint:gomnd
|
|
}
|
|
utils.SetBigIntFromLEBytes(y, leBuf[:])
|
|
return sign, y
|
|
}
|
|
|
|
// Compress the point into a 32 byte array that contains the y coordinate in
|
|
// little endian and the sign of the x coordinate.
|
|
func (p *Point) Compress() [32]byte {
|
|
sign := PointCoordSign(p.X)
|
|
return PackSignY(sign, p.Y)
|
|
}
|
|
|
|
// Decompress a compressed Point into p, and also returns the decompressed
|
|
// Point. Returns error if the compressed Point is invalid.
|
|
func (p *Point) Decompress(leBuf [32]byte) (*Point, error) {
|
|
var sign bool
|
|
sign, p.Y = UnpackSignY(leBuf)
|
|
return PointFromSignAndY(sign, p.Y)
|
|
}
|
|
|
|
// PointFromSignAndY returns a Point from a Sign and the Y coordinate
|
|
func PointFromSignAndY(sign bool, y *big.Int) (*Point, error) {
|
|
var p Point
|
|
p.X = big.NewInt(0)
|
|
p.Y = y
|
|
if p.Y.Cmp(constants.Q) >= 0 {
|
|
return nil, fmt.Errorf("p.y >= Q")
|
|
}
|
|
|
|
y2 := new(big.Int).Mul(p.Y, p.Y)
|
|
y2.Mod(y2, constants.Q)
|
|
xa := big.NewInt(1)
|
|
xa.Sub(xa, y2) // xa == 1 - y^2
|
|
|
|
xb := new(big.Int).Mul(D, y2)
|
|
xb.Mod(xb, constants.Q)
|
|
xb.Sub(A, xb) // xb = A - d * y^2
|
|
|
|
if xb.Cmp(big.NewInt(0)) == 0 {
|
|
return nil, fmt.Errorf("division by 0")
|
|
}
|
|
xb.ModInverse(xb, constants.Q)
|
|
p.X.Mul(xa, xb) // xa / xb
|
|
p.X.Mod(p.X, constants.Q)
|
|
noSqrt := p.X.ModSqrt(p.X, constants.Q)
|
|
if noSqrt == nil {
|
|
return nil, fmt.Errorf("x is not a square mod q")
|
|
}
|
|
if (sign && !PointCoordSign(p.X)) || (!sign && PointCoordSign(p.X)) {
|
|
p.X.Mul(p.X, constants.MinusOne)
|
|
}
|
|
p.X.Mod(p.X, constants.Q)
|
|
|
|
return &p, nil
|
|
}
|