package babyjub
|
|
|
|
import (
|
|
"fmt"
|
|
"github.com/iden3/go-iden3-crypto/constants"
|
|
"github.com/iden3/go-iden3-crypto/utils"
|
|
"math/big"
|
|
)
|
|
|
|
// A is one of the babyjub constants.
|
|
var A *big.Int
|
|
|
|
// D is one of the babyjub constants.
|
|
var D *big.Int
|
|
|
|
// Order of the babyjub curve.
|
|
var Order *big.Int
|
|
|
|
// SubOrder is the order of the subgroup of the babyjub curve that contains the
|
|
// points that we use.
|
|
var SubOrder *big.Int
|
|
|
|
// B8 is a base point of the babyjub multiplied by 8 to make it a base point of
|
|
// the subgroup in the curve.
|
|
var B8 *Point
|
|
|
|
// init initializes global numbers and the subgroup base.
|
|
func init() {
|
|
A = utils.NewIntFromString("168700")
|
|
D = utils.NewIntFromString("168696")
|
|
|
|
Order = utils.NewIntFromString(
|
|
"21888242871839275222246405745257275088614511777268538073601725287587578984328")
|
|
SubOrder = new(big.Int).Rsh(Order, 3)
|
|
|
|
B8 = NewPoint()
|
|
B8.X = utils.NewIntFromString(
|
|
"17777552123799933955779906779655732241715742912184938656739573121738514868268")
|
|
B8.Y = utils.NewIntFromString(
|
|
"2626589144620713026669568689430873010625803728049924121243784502389097019475")
|
|
}
|
|
|
|
// Point represents a point of the babyjub curve.
|
|
type Point struct {
|
|
X *big.Int
|
|
Y *big.Int
|
|
}
|
|
|
|
// NewPoint creates a new Point.
|
|
func NewPoint() *Point {
|
|
return &Point{X: big.NewInt(0), Y: big.NewInt(1)}
|
|
}
|
|
|
|
// Set copies a Point c into the Point p
|
|
func (p *Point) Set(c *Point) *Point {
|
|
p.X.Set(c.X)
|
|
p.Y.Set(c.Y)
|
|
return p
|
|
}
|
|
|
|
// Add adds Point a and b into res
|
|
func (res *Point) Add(a *Point, b *Point) *Point {
|
|
// x = (a.x * b.y + b.x * a.y) * (1 + D * a.x * b.x * a.y * b.y)^-1 mod q
|
|
x1a := new(big.Int).Mul(a.X, b.Y)
|
|
x1b := new(big.Int).Mul(b.X, a.Y)
|
|
x1a.Add(x1a, x1b) // x1a = a.x * b.y + b.x * a.y
|
|
|
|
x2 := new(big.Int).Set(D)
|
|
x2.Mul(x2, a.X)
|
|
x2.Mul(x2, b.X)
|
|
x2.Mul(x2, a.Y)
|
|
x2.Mul(x2, b.Y)
|
|
x2.Add(constants.One, x2)
|
|
x2.Mod(x2, constants.Q)
|
|
x2.ModInverse(x2, constants.Q) // x2 = (1 + D * a.x * b.x * a.y * b.y)^-1
|
|
|
|
// y = (a.y * b.y + A * a.x * a.x) * (1 - D * a.x * b.x * a.y * b.y)^-1 mod q
|
|
y1a := new(big.Int).Mul(a.Y, b.Y)
|
|
y1b := new(big.Int).Set(A)
|
|
y1b.Mul(y1b, a.X)
|
|
y1b.Mul(y1b, b.X)
|
|
|
|
y1a.Sub(y1a, y1b) // y1a = a.y * b.y - A * a.x * b.x
|
|
|
|
y2 := new(big.Int).Set(D)
|
|
y2.Mul(y2, a.X)
|
|
y2.Mul(y2, b.X)
|
|
y2.Mul(y2, a.Y)
|
|
y2.Mul(y2, b.Y)
|
|
y2.Sub(constants.One, y2)
|
|
y2.Mod(y2, constants.Q)
|
|
y2.ModInverse(y2, constants.Q) // y2 = (1 - D * a.x * b.x * a.y * b.y)^-1
|
|
|
|
res.X = x1a.Mul(x1a, x2)
|
|
res.X = res.X.Mod(res.X, constants.Q)
|
|
|
|
res.Y = y1a.Mul(y1a, y2)
|
|
res.Y = res.Y.Mod(res.Y, constants.Q)
|
|
|
|
return res
|
|
}
|
|
|
|
// Mul multiplies the Point p by the scalar s and stores the result in res,
|
|
// which is also returned.
|
|
func (res *Point) Mul(s *big.Int, p *Point) *Point {
|
|
res.X = big.NewInt(0)
|
|
res.Y = big.NewInt(1)
|
|
exp := NewPoint().Set(p)
|
|
|
|
for i := 0; i < s.BitLen(); i++ {
|
|
if s.Bit(i) == 1 {
|
|
res.Add(res, exp)
|
|
}
|
|
exp.Add(exp, exp)
|
|
}
|
|
|
|
return res
|
|
}
|
|
|
|
// InCurve returns true when the Point p is in the babyjub curve.
|
|
func (p *Point) InCurve() bool {
|
|
x2 := new(big.Int).Set(p.X)
|
|
x2.Mul(x2, x2)
|
|
x2.Mod(x2, constants.Q)
|
|
|
|
y2 := new(big.Int).Set(p.Y)
|
|
y2.Mul(y2, y2)
|
|
y2.Mod(y2, constants.Q)
|
|
|
|
a := new(big.Int).Mul(A, x2)
|
|
a.Add(a, y2)
|
|
a.Mod(a, constants.Q)
|
|
|
|
b := new(big.Int).Set(D)
|
|
b.Mul(b, x2)
|
|
b.Mul(b, y2)
|
|
b.Add(constants.One, b)
|
|
b.Mod(b, constants.Q)
|
|
|
|
return a.Cmp(b) == 0
|
|
}
|
|
|
|
// InSubGroup returns true when the Point p is in the subgroup of the babyjub
|
|
// curve.
|
|
func (p *Point) InSubGroup() bool {
|
|
if !p.InCurve() {
|
|
return false
|
|
}
|
|
res := NewPoint().Mul(SubOrder, p)
|
|
return (res.X.Cmp(constants.Zero) == 0) && (res.Y.Cmp(constants.One) == 0)
|
|
}
|
|
|
|
// PointCoordSign returns the sign of the curve point coordinate. It returns
|
|
// false if the sign is positive and false if the sign is negative.
|
|
func PointCoordSign(c *big.Int) bool {
|
|
if c.Cmp(new(big.Int).Rsh(constants.Q, 1)) == 1 {
|
|
return true
|
|
}
|
|
return false
|
|
}
|
|
|
|
func PackPoint(ay *big.Int, sign bool) [32]byte {
|
|
leBuf := utils.BigIntLEBytes(ay)
|
|
if sign {
|
|
leBuf[31] = leBuf[31] | 0x80
|
|
}
|
|
return leBuf
|
|
}
|
|
|
|
// Compress the point into a 32 byte array that contains the y coordinate in
|
|
// little endian and the sign of the x coordinate.
|
|
func (p *Point) Compress() [32]byte {
|
|
sign := false
|
|
if PointCoordSign(p.X) {
|
|
sign = true
|
|
}
|
|
return PackPoint(p.Y, sign)
|
|
}
|
|
|
|
// Decompress a compressed Point into p, and also returns the decompressed
|
|
// Point. Returns error if the compressed Point is invalid.
|
|
func (p *Point) Decompress(leBuf [32]byte) (*Point, error) {
|
|
sign := false
|
|
if (leBuf[31] & 0x80) != 0x00 {
|
|
sign = true
|
|
leBuf[31] = leBuf[31] & 0x7F
|
|
}
|
|
utils.SetBigIntFromLEBytes(p.Y, leBuf[:])
|
|
if p.Y.Cmp(constants.Q) >= 0 {
|
|
return nil, fmt.Errorf("p.y >= Q")
|
|
}
|
|
|
|
y2 := new(big.Int).Mul(p.Y, p.Y)
|
|
y2.Mod(y2, constants.Q)
|
|
xa := big.NewInt(1)
|
|
xa.Sub(xa, y2) // xa == 1 - y^2
|
|
|
|
xb := new(big.Int).Mul(D, y2)
|
|
xb.Mod(xb, constants.Q)
|
|
xb.Sub(A, xb) // xb = A - d * y^2
|
|
|
|
if xb.Cmp(big.NewInt(0)) == 0 {
|
|
return nil, fmt.Errorf("division by 0")
|
|
}
|
|
xb.ModInverse(xb, constants.Q)
|
|
p.X.Mul(xa, xb) // xa / xb
|
|
p.X.Mod(p.X, constants.Q)
|
|
p.X.ModSqrt(p.X, constants.Q)
|
|
if (sign && !PointCoordSign(p.X)) || (!sign && PointCoordSign(p.X)) {
|
|
p.X.Mul(p.X, constants.MinusOne)
|
|
}
|
|
p.X.Mod(p.X, constants.Q)
|
|
|
|
return p, nil
|
|
}
|