You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

264 lines
6.6 KiB

package babyjub
import (
"fmt"
"math/big"
"github.com/iden3/go-iden3-crypto/constants"
"github.com/iden3/go-iden3-crypto/ff"
"github.com/iden3/go-iden3-crypto/utils"
)
// A is one of the babyjub constants.
var A *big.Int
// Aff is A value in *ff.Element representation
var Aff *ff.Element
// D is one of the babyjub constants.
var D *big.Int
// Dff is D value in *ff.Element representation
var Dff *ff.Element
// Order of the babyjub curve.
var Order *big.Int
// SubOrder is the order of the subgroup of the babyjub curve that contains the
// points that we use.
var SubOrder *big.Int
// B8 is a base point of the babyjub multiplied by 8 to make it a base point of
// the subgroup in the curve.
var B8 *Point
// init initializes global numbers and the subgroup base.
func init() {
A = utils.NewIntFromString("168700")
D = utils.NewIntFromString("168696")
Aff = ff.NewElement().SetBigInt(A)
Dff = ff.NewElement().SetBigInt(D)
Order = utils.NewIntFromString(
"21888242871839275222246405745257275088614511777268538073601725287587578984328")
SubOrder = new(big.Int).Rsh(Order, 3)
B8 = NewPoint()
B8.X = utils.NewIntFromString(
"5299619240641551281634865583518297030282874472190772894086521144482721001553")
B8.Y = utils.NewIntFromString(
"16950150798460657717958625567821834550301663161624707787222815936182638968203")
}
// PointProjective is the Point representation in projective coordinates
type PointProjective struct {
X *ff.Element
Y *ff.Element
Z *ff.Element
}
// NewPointProjective creates a new Point in projective coordinates.
func NewPointProjective() *PointProjective {
return &PointProjective{X: ff.NewElement().SetZero(), Y: ff.NewElement().SetOne(), Z: ff.NewElement().SetOne()}
}
// Affine returns the Point from the projective representation
func (p *PointProjective) Affine() *Point {
if p.Z.Equal(ff.NewElement().SetZero()) {
return &Point{
X: big.NewInt(0),
Y: big.NewInt(0),
}
}
zinv := ff.NewElement().Inverse(p.Z)
x := ff.NewElement().Mul(p.X, zinv)
y := ff.NewElement().Mul(p.Y, zinv)
xBig := big.NewInt(0)
x.ToBigIntRegular(xBig)
yBig := big.NewInt(0)
y.ToBigIntRegular(yBig)
return &Point{
X: xBig,
Y: yBig,
}
}
// Add computes the addition of two points in projective coordinates representation
func (res *PointProjective) Add(p *PointProjective, q *PointProjective) *PointProjective {
// add-2008-bbjlp https://hyperelliptic.org/EFD/g1p/auto-twisted-projective.html#doubling-dbl-2008-bbjlp
a := ff.NewElement().Mul(p.Z, q.Z)
b := ff.NewElement().Square(a)
c := ff.NewElement().Mul(p.X, q.X)
d := ff.NewElement().Mul(p.Y, q.Y)
e := ff.NewElement().Mul(Dff, c)
e.MulAssign(d)
f := ff.NewElement().Sub(b, e)
g := ff.NewElement().Add(b, e)
x1y1 := ff.NewElement().Add(p.X, p.Y)
x2y2 := ff.NewElement().Add(q.X, q.Y)
x3 := ff.NewElement().Mul(x1y1, x2y2)
x3.SubAssign(c)
x3.SubAssign(d)
x3.MulAssign(a)
x3.MulAssign(f)
ac := ff.NewElement().Mul(Aff, c)
y3 := ff.NewElement().Sub(d, ac)
y3.MulAssign(a)
y3.MulAssign(g)
z3 := ff.NewElement().Mul(f, g)
res.X = x3
res.Y = y3
res.Z = z3
return res
}
// Point represents a point of the babyjub curve.
type Point struct {
X *big.Int
Y *big.Int
}
// NewPoint creates a new Point.
func NewPoint() *Point {
return &Point{X: big.NewInt(0), Y: big.NewInt(1)}
}
// Set copies a Point c into the Point p
func (p *Point) Set(c *Point) *Point {
p.X.Set(c.X)
p.Y.Set(c.Y)
return p
}
// Projective returns a PointProjective from the Point
func (p *Point) Projective() *PointProjective {
return &PointProjective{
X: ff.NewElement().SetBigInt(p.X),
Y: ff.NewElement().SetBigInt(p.Y),
Z: ff.NewElement().SetOne(),
}
}
// Mul multiplies the Point p by the scalar s and stores the result in res,
// which is also returned.
func (res *Point) Mul(s *big.Int, p *Point) *Point {
resProj := &PointProjective{
X: ff.NewElement().SetZero(),
Y: ff.NewElement().SetOne(),
Z: ff.NewElement().SetOne(),
}
exp := p.Projective()
for i := 0; i < s.BitLen(); i++ {
if s.Bit(i) == 1 {
resProj.Add(resProj, exp)
}
exp = exp.Add(exp, exp)
}
res = resProj.Affine()
return res
}
// InCurve returns true when the Point p is in the babyjub curve.
func (p *Point) InCurve() bool {
x2 := new(big.Int).Set(p.X)
x2.Mul(x2, x2)
x2.Mod(x2, constants.Q)
y2 := new(big.Int).Set(p.Y)
y2.Mul(y2, y2)
y2.Mod(y2, constants.Q)
a := new(big.Int).Mul(A, x2)
a.Add(a, y2)
a.Mod(a, constants.Q)
b := new(big.Int).Set(D)
b.Mul(b, x2)
b.Mul(b, y2)
b.Add(constants.One, b)
b.Mod(b, constants.Q)
return a.Cmp(b) == 0
}
// InSubGroup returns true when the Point p is in the subgroup of the babyjub
// curve.
func (p *Point) InSubGroup() bool {
if !p.InCurve() {
return false
}
res := NewPoint().Mul(SubOrder, p)
return (res.X.Cmp(constants.Zero) == 0) && (res.Y.Cmp(constants.One) == 0)
}
// PointCoordSign returns the sign of the curve point coordinate. It returns
// false if the sign is positive and false if the sign is negative.
func PointCoordSign(c *big.Int) bool {
return c.Cmp(new(big.Int).Rsh(constants.Q, 1)) == 1
}
func PackPoint(ay *big.Int, sign bool) [32]byte {
leBuf := utils.BigIntLEBytes(ay)
if sign {
leBuf[31] = leBuf[31] | 0x80
}
return leBuf
}
// Compress the point into a 32 byte array that contains the y coordinate in
// little endian and the sign of the x coordinate.
func (p *Point) Compress() [32]byte {
sign := PointCoordSign(p.X)
return PackPoint(p.Y, sign)
}
// Decompress a compressed Point into p, and also returns the decompressed
// Point. Returns error if the compressed Point is invalid.
func (p *Point) Decompress(leBuf [32]byte) (*Point, error) {
sign := false
if (leBuf[31] & 0x80) != 0x00 {
sign = true
leBuf[31] = leBuf[31] & 0x7F
}
utils.SetBigIntFromLEBytes(p.Y, leBuf[:])
return PointFromSignAndY(sign, p.Y)
}
// PointFromSignAndY returns a Point from a Sign and the Y coordinate
func PointFromSignAndY(sign bool, y *big.Int) (*Point, error) {
var p Point
p.X = big.NewInt(0)
p.Y = y
if p.Y.Cmp(constants.Q) >= 0 {
return nil, fmt.Errorf("p.y >= Q")
}
y2 := new(big.Int).Mul(p.Y, p.Y)
y2.Mod(y2, constants.Q)
xa := big.NewInt(1)
xa.Sub(xa, y2) // xa == 1 - y^2
xb := new(big.Int).Mul(D, y2)
xb.Mod(xb, constants.Q)
xb.Sub(A, xb) // xb = A - d * y^2
if xb.Cmp(big.NewInt(0)) == 0 {
return nil, fmt.Errorf("division by 0")
}
xb.ModInverse(xb, constants.Q)
p.X.Mul(xa, xb) // xa / xb
p.X.Mod(p.X, constants.Q)
noSqrt := p.X.ModSqrt(p.X, constants.Q)
if noSqrt == nil {
return nil, fmt.Errorf("x is not a square mod q")
}
if (sign && !PointCoordSign(p.X)) || (!sign && PointCoordSign(p.X)) {
p.X.Mul(p.X, constants.MinusOne)
}
p.X.Mod(p.X, constants.Q)
return &p, nil
}