197 lines
4.2 KiB

package poseidon
import (
"errors"
"math/big"
"strconv"
"github.com/iden3/go-iden3-crypto/constants"
"github.com/iden3/go-iden3-crypto/ff"
"github.com/iden3/go-iden3-crypto/utils"
"golang.org/x/crypto/blake2b"
)
const SEED = "poseidon"
const NROUNDSF = 8
const NROUNDSP = 57
const T = 6
var constC []*ff.Element
var constM [T][T]*ff.Element
func Zero() *ff.Element {
return ff.NewElement()
}
func modQ(v *big.Int) {
v.Mod(v, constants.Q)
}
func init() {
constC = getPseudoRandom(SEED+"_constants", NROUNDSF+NROUNDSP)
constM = getMDS()
}
func getPseudoRandom(seed string, n int) []*ff.Element {
res := make([]*ff.Element, n)
hash := blake2b.Sum256([]byte(seed))
for i := 0; i < n; i++ {
hashBigInt := big.NewInt(int64(0))
res[i] = ff.NewElement().SetBigInt(utils.SetBigIntFromLEBytes(hashBigInt, hash[:]))
hash = blake2b.Sum256(hash[:])
}
return res
}
func nonceToString(n int) string {
r := strconv.Itoa(n)
for len(r) < 4 {
r = "0" + r
}
return r
}
// https://eprint.iacr.org/2019/458.pdf pag.8
func getMDS() [T][T]*ff.Element {
nonce := 0
cauchyMatrix := getPseudoRandom(SEED+"_matrix_"+nonceToString(nonce), T*2)
for !checkAllDifferent(cauchyMatrix) {
nonce += 1
cauchyMatrix = getPseudoRandom(SEED+"_matrix_"+nonceToString(nonce), T*2)
}
var m [T][T]*ff.Element
for i := 0; i < T; i++ {
for j := 0; j < T; j++ {
m[i][j] = ff.NewElement().Sub(cauchyMatrix[i], cauchyMatrix[T+j])
m[i][j].Inverse(m[i][j])
}
}
return m
}
func checkAllDifferent(v []*ff.Element) bool {
for i := 0; i < len(v); i++ {
if v[i].Equal(ff.NewElement()) {
return false
}
for j := i + 1; j < len(v); j++ {
if v[i].Equal(v[j]) {
return false
}
}
}
return true
}
// ark computes Add-Round Key, from the paper https://eprint.iacr.org/2019/458.pdf
func ark(state [T]*ff.Element, c *ff.Element) {
for i := 0; i < T; i++ {
state[i].Add(state[i], c)
}
}
// cubic performs x^5 mod p
// https://eprint.iacr.org/2019/458.pdf page 8
func cubic(a *ff.Element) {
a.Exp(*a, 5)
}
// sbox https://eprint.iacr.org/2019/458.pdf page 6
func sbox(state [T]*ff.Element, i int) {
if (i < NROUNDSF/2) || (i >= NROUNDSF/2+NROUNDSP) {
for j := 0; j < T; j++ {
cubic(state[j])
}
} else {
cubic(state[0])
}
}
// mix returns [[matrix]] * [vector]
func mix(state [T]*ff.Element, newState [T]*ff.Element, m [T][T]*ff.Element) {
mul := Zero()
for i := 0; i < T; i++ {
newState[i].SetUint64(0)
for j := 0; j < T; j++ {
mul.Mul(m[i][j], state[j])
newState[i].Add(newState[i], mul)
}
}
}
// PoseidonHash computes the Poseidon hash for the given inputs
func PoseidonHash(inpBI [T]*big.Int) (*big.Int, error) {
if !utils.CheckBigIntArrayInField(inpBI[:]) {
return nil, errors.New("inputs values not inside Finite Field")
}
inp := utils.BigIntArrayToElementArray(inpBI[:])
state := [T]*ff.Element{}
for i := 0; i < T; i++ {
state[i] = ff.NewElement().Set(inp[i])
}
// ARK --> SBox --> M, https://eprint.iacr.org/2019/458.pdf pag.5
var newState [T]*ff.Element
for i := 0; i < T; i++ {
newState[i] = Zero()
}
for i := 0; i < NROUNDSF+NROUNDSP; i++ {
ark(state, constC[i])
sbox(state, i)
mix(state, newState, constM)
state, newState = newState, state
}
rE := state[0]
r := big.NewInt(0)
rE.ToBigIntRegular(r)
return r, nil
}
// Hash performs the Poseidon hash over a ff.Element array
// in chunks of 5 elements
func Hash(arr []*big.Int) (*big.Int, error) {
r := big.NewInt(int64(1))
for i := 0; i < len(arr); i = i + T - 1 {
var toHash [T]*big.Int
j := 0
for ; j < T-1; j++ {
if i+j >= len(arr) {
break
}
toHash[j] = arr[i+j]
}
toHash[j] = r
j++
for ; j < T; j++ {
toHash[j] = big.NewInt(0)
}
ph, err := PoseidonHash(toHash)
if err != nil {
return nil, err
}
modQ(r.Add(r, ph))
}
return r, nil
}
// HashBytes hashes a msg byte slice by blocks of 31 bytes encoded as
// little-endian
func HashBytes(b []byte) (*big.Int, error) {
n := 31
bElems := make([]*big.Int, 0, len(b)/n+1)
for i := 0; i < len(b)/n; i++ {
v := big.NewInt(int64(0))
utils.SetBigIntFromLEBytes(v, b[n*i:n*(i+1)])
bElems = append(bElems, v)
}
if len(b)%n != 0 {
v := big.NewInt(int64(0))
utils.SetBigIntFromLEBytes(v, b[(len(b)/n)*n:])
bElems = append(bElems, v)
}
return Hash(bElems)
}