|
|
package merkletree
import ( "bytes" "encoding/hex" "errors" "fmt" "io" "math/big" "strings" "sync"
cryptoUtils "github.com/iden3/go-iden3-crypto/utils" )
const ( // proofFlagsLen is the byte length of the flags in the proof header
// (first 32 bytes).
proofFlagsLen = 2 // ElemBytesLen is the length of the Hash byte array
ElemBytesLen = 32
numCharPrint = 8 )
var ( // ErrNodeKeyAlreadyExists is used when a node key already exists.
ErrNodeKeyAlreadyExists = errors.New("key already exists") // ErrKeyNotFound is used when a key is not found in the MerkleTree.
ErrKeyNotFound = errors.New("Key not found in the MerkleTree") // ErrNodeBytesBadSize is used when the data of a node has an incorrect
// size and can't be parsed.
ErrNodeBytesBadSize = errors.New("node data has incorrect size in the DB") // ErrReachedMaxLevel is used when a traversal of the MT reaches the
// maximum level.
ErrReachedMaxLevel = errors.New("reached maximum level of the merkle tree") // ErrInvalidNodeFound is used when an invalid node is found and can't
// be parsed.
ErrInvalidNodeFound = errors.New("found an invalid node in the DB") // ErrInvalidProofBytes is used when a serialized proof is invalid.
ErrInvalidProofBytes = errors.New("the serialized proof is invalid") // ErrInvalidDBValue is used when a value in the key value DB is
// invalid (for example, it doen't contain a byte header and a []byte
// body of at least len=1.
ErrInvalidDBValue = errors.New("the value in the DB is invalid") // ErrEntryIndexAlreadyExists is used when the entry index already
// exists in the tree.
ErrEntryIndexAlreadyExists = errors.New("the entry index already exists in the tree") // ErrNotWritable is used when the MerkleTree is not writable and a
// write function is called
ErrNotWritable = errors.New("Merkle Tree not writable")
dbKeyRootNode = []byte("currentroot") // HashZero is used at Empty nodes
HashZero = Hash{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0} )
// Hash is the generic type stored in the MerkleTree
type Hash [32]byte
// MarshalText implements the marshaler for the Hash type
func (h Hash) MarshalText() ([]byte, error) { return []byte(h.BigInt().String()), nil }
// UnmarshalText implements the unmarshaler for the Hash type
func (h *Hash) UnmarshalText(b []byte) error { ha, err := NewHashFromString(string(b)) copy(h[:], ha[:]) return err }
// String returns decimal representation in string format of the Hash
func (h Hash) String() string { s := h.BigInt().String() if len(s) < numCharPrint { return s } return s[0:numCharPrint] + "..." }
// Hex returns the hexadecimal representation of the Hash
func (h Hash) Hex() string { return hex.EncodeToString(h[:]) // alternatively equivalent, but with too extra steps:
// bRaw := h.BigInt().Bytes()
// b := [32]byte{}
// copy(b[:], SwapEndianness(bRaw[:]))
// return hex.EncodeToString(b[:])
}
// BigInt returns the *big.Int representation of the *Hash
func (h *Hash) BigInt() *big.Int { if new(big.Int).SetBytes(SwapEndianness(h[:])) == nil { return big.NewInt(0) } return new(big.Int).SetBytes(SwapEndianness(h[:])) }
// Bytes returns the []byte representation of the *Hash, which always is 32
// bytes length.
func (h *Hash) Bytes() []byte { bi := new(big.Int).SetBytes(h[:]).Bytes() b := [32]byte{} copy(b[:], SwapEndianness(bi[:])) return b[:] }
// NewBigIntFromHashBytes returns a *big.Int from a byte array, swapping the
// endianness in the process. This is the intended method to get a *big.Int
// from a byte array that previously has ben generated by the Hash.Bytes()
// method.
func NewBigIntFromHashBytes(b []byte) (*big.Int, error) { if len(b) != ElemBytesLen { return nil, fmt.Errorf("Expected 32 bytes, found %d bytes", len(b)) } bi := new(big.Int).SetBytes(b[:ElemBytesLen]) if !cryptoUtils.CheckBigIntInField(bi) { return nil, fmt.Errorf("NewBigIntFromHashBytes: Value not inside the Finite Field") } return bi, nil }
// NewHashFromBigInt returns a *Hash representation of the given *big.Int
func NewHashFromBigInt(b *big.Int) *Hash { r := &Hash{} copy(r[:], SwapEndianness(b.Bytes())) return r }
// NewHashFromBytes returns a *Hash from a byte array, swapping the endianness
// in the process. This is the intended method to get a *Hash from a byte array
// that previously has ben generated by the Hash.Bytes() method.
func NewHashFromBytes(b []byte) (*Hash, error) { if len(b) != ElemBytesLen { return nil, fmt.Errorf("Expected 32 bytes, found %d bytes", len(b)) } var h Hash copy(h[:], SwapEndianness(b)) return &h, nil }
// NewHashFromHex returns a *Hash representation of the given hex string
func NewHashFromHex(h string) (*Hash, error) { h = strings.TrimPrefix(h, "0x") b, err := hex.DecodeString(h) if err != nil { return nil, err } return NewHashFromBytes(SwapEndianness(b[:])) }
// NewHashFromString returns a *Hash representation of the given decimal string
func NewHashFromString(s string) (*Hash, error) { bi, ok := new(big.Int).SetString(s, 10) if !ok { return nil, fmt.Errorf("Can not parse string to Hash") } return NewHashFromBigInt(bi), nil }
// MerkleTree is the struct with the main elements of the MerkleTree
type MerkleTree struct { sync.RWMutex db Storage rootKey *Hash writable bool maxLevels int }
// NewMerkleTree loads a new MerkleTree. If in the storage already exists one
// will open that one, if not, will create a new one.
func NewMerkleTree(storage Storage, maxLevels int) (*MerkleTree, error) { mt := MerkleTree{db: storage, maxLevels: maxLevels, writable: true}
root, err := mt.dbGetRoot() if err == ErrNotFound { tx, err := mt.db.NewTx() if err != nil { return nil, err } mt.rootKey = &HashZero err = tx.SetRoot(mt.rootKey) if err != nil { return nil, err } err = tx.Commit() if err != nil { return nil, err } return &mt, nil } else if err != nil { return nil, err } mt.rootKey = root return &mt, nil }
func (mt *MerkleTree) dbGetRoot() (*Hash, error) { hash, err := mt.db.GetRoot() if err != nil { return nil, err } return hash, nil }
// DB returns the MerkleTree.DB()
func (mt *MerkleTree) DB() Storage { return mt.db }
// Root returns the MerkleRoot
func (mt *MerkleTree) Root() *Hash { return mt.rootKey }
// MaxLevels returns the MT maximum level
func (mt *MerkleTree) MaxLevels() int { return mt.maxLevels }
// Snapshot returns a read-only copy of the MerkleTree
func (mt *MerkleTree) Snapshot(rootKey *Hash) (*MerkleTree, error) { mt.RLock() defer mt.RUnlock() _, err := mt.GetNode(rootKey) if err != nil { return nil, err } return &MerkleTree{db: mt.db, maxLevels: mt.maxLevels, rootKey: rootKey, writable: false}, nil }
// Add adds a Key & Value into the MerkleTree. Where the `k` determines the
// path from the Root to the Leaf.
func (mt *MerkleTree) Add(k, v *big.Int) error { // verify that the MerkleTree is writable
if !mt.writable { return ErrNotWritable }
// verify that k & v are valid and fit inside the Finite Field.
if !cryptoUtils.CheckBigIntInField(k) { return errors.New("Key not inside the Finite Field") } if !cryptoUtils.CheckBigIntInField(v) { return errors.New("Value not inside the Finite Field") }
tx, err := mt.db.NewTx() if err != nil { return err } mt.Lock() defer mt.Unlock()
kHash := NewHashFromBigInt(k) vHash := NewHashFromBigInt(v) newNodeLeaf := NewNodeLeaf(kHash, vHash) path := getPath(mt.maxLevels, kHash[:])
newRootKey, err := mt.addLeaf(tx, newNodeLeaf, mt.rootKey, 0, path) if err != nil { return err } mt.rootKey = newRootKey err = mt.setCurrentRoot(tx, mt.rootKey) if err != nil { return err }
if err := tx.Commit(); err != nil { return err }
return nil }
// AddAndGetCircomProof does an Add, and returns a CircomProcessorProof
func (mt *MerkleTree) AddAndGetCircomProof(k, v *big.Int) (*CircomProcessorProof, error) { var cp CircomProcessorProof cp.Fnc = 2 cp.OldRoot = mt.rootKey gotK, gotV, _, err := mt.Get(k) if err != nil && err != ErrKeyNotFound { return nil, err } cp.OldKey = NewHashFromBigInt(gotK) cp.OldValue = NewHashFromBigInt(gotV) if bytes.Equal(cp.OldKey[:], HashZero[:]) { cp.IsOld0 = true } _, _, siblings, err := mt.Get(k) if err != nil && err != ErrKeyNotFound { return nil, err } cp.Siblings = CircomSiblingsFromSiblings(siblings, mt.maxLevels)
err = mt.Add(k, v) if err != nil { return nil, err }
cp.NewKey = NewHashFromBigInt(k) cp.NewValue = NewHashFromBigInt(v) cp.NewRoot = mt.rootKey
return &cp, nil }
// pushLeaf recursively pushes an existing oldLeaf down until its path diverges
// from newLeaf, at which point both leafs are stored, all while updating the
// path.
func (mt *MerkleTree) pushLeaf(tx Tx, newLeaf *Node, oldLeaf *Node, lvl int, pathNewLeaf []bool, pathOldLeaf []bool) (*Hash, error) { if lvl > mt.maxLevels-2 { return nil, ErrReachedMaxLevel } var newNodeMiddle *Node if pathNewLeaf[lvl] == pathOldLeaf[lvl] { // We need to go deeper!
nextKey, err := mt.pushLeaf(tx, newLeaf, oldLeaf, lvl+1, pathNewLeaf, pathOldLeaf) if err != nil { return nil, err } if pathNewLeaf[lvl] { // go right
newNodeMiddle = NewNodeMiddle(&HashZero, nextKey) } else { // go left
newNodeMiddle = NewNodeMiddle(nextKey, &HashZero) } return mt.addNode(tx, newNodeMiddle) } oldLeafKey, err := oldLeaf.Key() if err != nil { return nil, err } newLeafKey, err := newLeaf.Key() if err != nil { return nil, err }
if pathNewLeaf[lvl] { newNodeMiddle = NewNodeMiddle(oldLeafKey, newLeafKey) } else { newNodeMiddle = NewNodeMiddle(newLeafKey, oldLeafKey) } // We can add newLeaf now. We don't need to add oldLeaf because it's
// already in the tree.
_, err = mt.addNode(tx, newLeaf) if err != nil { return nil, err } return mt.addNode(tx, newNodeMiddle) }
// addLeaf recursively adds a newLeaf in the MT while updating the path.
func (mt *MerkleTree) addLeaf(tx Tx, newLeaf *Node, key *Hash, lvl int, path []bool) (*Hash, error) { var err error var nextKey *Hash if lvl > mt.maxLevels-1 { return nil, ErrReachedMaxLevel } n, err := mt.GetNode(key) if err != nil { return nil, err } switch n.Type { case NodeTypeEmpty: // We can add newLeaf now
return mt.addNode(tx, newLeaf) case NodeTypeLeaf: nKey := n.Entry[0] // Check if leaf node found contains the leaf node we are
// trying to add
newLeafKey := newLeaf.Entry[0] if bytes.Equal(nKey[:], newLeafKey[:]) { return nil, ErrEntryIndexAlreadyExists } pathOldLeaf := getPath(mt.maxLevels, nKey[:]) // We need to push newLeaf down until its path diverges from
// n's path
return mt.pushLeaf(tx, newLeaf, n, lvl, path, pathOldLeaf) case NodeTypeMiddle: // We need to go deeper, continue traversing the tree, left or
// right depending on path
var newNodeMiddle *Node if path[lvl] { // go right
nextKey, err = mt.addLeaf(tx, newLeaf, n.ChildR, lvl+1, path) newNodeMiddle = NewNodeMiddle(n.ChildL, nextKey) } else { // go left
nextKey, err = mt.addLeaf(tx, newLeaf, n.ChildL, lvl+1, path) newNodeMiddle = NewNodeMiddle(nextKey, n.ChildR) } if err != nil { return nil, err } // Update the node to reflect the modified child
return mt.addNode(tx, newNodeMiddle) default: return nil, ErrInvalidNodeFound } }
// addNode adds a node into the MT. Empty nodes are not stored in the tree;
// they are all the same and assumed to always exist.
func (mt *MerkleTree) addNode(tx Tx, n *Node) (*Hash, error) { // verify that the MerkleTree is writable
if !mt.writable { return nil, ErrNotWritable } if n.Type == NodeTypeEmpty { return n.Key() } k, err := n.Key() if err != nil { return nil, err } //v := n.Value()
// Check that the node key doesn't already exist
if _, err := tx.Get(k[:]); err == nil { return nil, ErrNodeKeyAlreadyExists } err = tx.Put(k[:], n) return k, err }
// updateNode updates an existing node in the MT. Empty nodes are not stored
// in the tree; they are all the same and assumed to always exist.
func (mt *MerkleTree) updateNode(tx Tx, n *Node) (*Hash, error) { // verify that the MerkleTree is writable
if !mt.writable { return nil, ErrNotWritable } if n.Type == NodeTypeEmpty { return n.Key() } k, err := n.Key() if err != nil { return nil, err } //v := n.Value()
err = tx.Put(k[:], n) return k, err }
// Get returns the value of the leaf for the given key
func (mt *MerkleTree) Get(k *big.Int) (*big.Int, *big.Int, []*Hash, error) { // verify that k is valid and fits inside the Finite Field.
if !cryptoUtils.CheckBigIntInField(k) { return nil, nil, nil, errors.New("Key not inside the Finite Field") }
kHash := NewHashFromBigInt(k) path := getPath(mt.maxLevels, kHash[:])
nextKey := mt.rootKey siblings := []*Hash{} for i := 0; i < mt.maxLevels; i++ { n, err := mt.GetNode(nextKey) if err != nil { return nil, nil, nil, err } switch n.Type { case NodeTypeEmpty: return big.NewInt(0), big.NewInt(0), siblings, ErrKeyNotFound case NodeTypeLeaf: if bytes.Equal(kHash[:], n.Entry[0][:]) { return n.Entry[0].BigInt(), n.Entry[1].BigInt(), siblings, nil } return n.Entry[0].BigInt(), n.Entry[1].BigInt(), siblings, ErrKeyNotFound case NodeTypeMiddle: if path[i] { nextKey = n.ChildR siblings = append(siblings, n.ChildL) } else { nextKey = n.ChildL siblings = append(siblings, n.ChildR) } default: return nil, nil, nil, ErrInvalidNodeFound } }
return nil, nil, nil, ErrReachedMaxLevel }
// Update updates the value of a specified key in the MerkleTree, and updates
// the path from the leaf to the Root with the new values. Returns the
// CircomProcessorProof.
func (mt *MerkleTree) Update(k, v *big.Int) (*CircomProcessorProof, error) { // verify that the MerkleTree is writable
if !mt.writable { return nil, ErrNotWritable }
// verify that k & v are valid and fit inside the Finite Field.
if !cryptoUtils.CheckBigIntInField(k) { return nil, errors.New("Key not inside the Finite Field") } if !cryptoUtils.CheckBigIntInField(v) { return nil, errors.New("Key not inside the Finite Field") } tx, err := mt.db.NewTx() if err != nil { return nil, err } mt.Lock() defer mt.Unlock()
kHash := NewHashFromBigInt(k) vHash := NewHashFromBigInt(v) path := getPath(mt.maxLevels, kHash[:])
var cp CircomProcessorProof cp.Fnc = 1 cp.OldRoot = mt.rootKey cp.OldKey = kHash cp.NewKey = kHash cp.NewValue = vHash
nextKey := mt.rootKey siblings := []*Hash{} for i := 0; i < mt.maxLevels; i++ { n, err := mt.GetNode(nextKey) if err != nil { return nil, err } switch n.Type { case NodeTypeEmpty: return nil, ErrKeyNotFound case NodeTypeLeaf: if bytes.Equal(kHash[:], n.Entry[0][:]) { cp.OldValue = n.Entry[1] cp.Siblings = CircomSiblingsFromSiblings(siblings, mt.maxLevels) // update leaf and upload to the root
newNodeLeaf := NewNodeLeaf(kHash, vHash) _, err := mt.updateNode(tx, newNodeLeaf) if err != nil { return nil, err } newRootKey, err := mt.recalculatePathUntilRoot(tx, path, newNodeLeaf, siblings) if err != nil { return nil, err } mt.rootKey = newRootKey err = mt.setCurrentRoot(tx, mt.rootKey) if err != nil { return nil, err } cp.NewRoot = newRootKey if err := tx.Commit(); err != nil { return nil, err } return &cp, nil } return nil, ErrKeyNotFound case NodeTypeMiddle: if path[i] { nextKey = n.ChildR siblings = append(siblings, n.ChildL) } else { nextKey = n.ChildL siblings = append(siblings, n.ChildR) } default: return nil, ErrInvalidNodeFound } }
return nil, ErrKeyNotFound }
// Delete removes the specified Key from the MerkleTree and updates the path
// from the deleted key to the Root with the new values. This method removes
// the key from the MerkleTree, but does not remove the old nodes from the
// key-value database; this means that if the tree is accessed by an old Root
// where the key was not deleted yet, the key will still exist. If is desired
// to remove the key-values from the database that are not under the current
// Root, an option could be to dump all the leaves (using mt.DumpLeafs) and
// import them in a new MerkleTree in a new database (using
// mt.ImportDumpedLeafs), but this will loose all the Root history of the
// MerkleTree
func (mt *MerkleTree) Delete(k *big.Int) error { // verify that the MerkleTree is writable
if !mt.writable { return ErrNotWritable }
// verify that k is valid and fits inside the Finite Field.
if !cryptoUtils.CheckBigIntInField(k) { return errors.New("Key not inside the Finite Field") } tx, err := mt.db.NewTx() if err != nil { return err } mt.Lock() defer mt.Unlock()
kHash := NewHashFromBigInt(k) path := getPath(mt.maxLevels, kHash[:])
nextKey := mt.rootKey siblings := []*Hash{} for i := 0; i < mt.maxLevels; i++ { n, err := mt.GetNode(nextKey) if err != nil { return err } switch n.Type { case NodeTypeEmpty: return ErrKeyNotFound case NodeTypeLeaf: if bytes.Equal(kHash[:], n.Entry[0][:]) { // remove and go up with the sibling
err = mt.rmAndUpload(tx, path, kHash, siblings) return err } return ErrKeyNotFound case NodeTypeMiddle: if path[i] { nextKey = n.ChildR siblings = append(siblings, n.ChildL) } else { nextKey = n.ChildL siblings = append(siblings, n.ChildR) } default: return ErrInvalidNodeFound } }
return ErrKeyNotFound }
// rmAndUpload removes the key, and goes up until the root updating all the
// nodes with the new values.
func (mt *MerkleTree) rmAndUpload(tx Tx, path []bool, kHash *Hash, siblings []*Hash) error { if len(siblings) == 0 { mt.rootKey = &HashZero err := mt.setCurrentRoot(tx, mt.rootKey) if err != nil { return err } return tx.Commit() }
toUpload := siblings[len(siblings)-1] if len(siblings) < 2 { //nolint:gomnd
mt.rootKey = siblings[0] err := mt.setCurrentRoot(tx, mt.rootKey) if err != nil { return err } return tx.Commit() } for i := len(siblings) - 2; i >= 0; i-- { //nolint:gomnd
if !bytes.Equal(siblings[i][:], HashZero[:]) { var newNode *Node if path[i] { newNode = NewNodeMiddle(siblings[i], toUpload) } else { newNode = NewNodeMiddle(toUpload, siblings[i]) } _, err := mt.addNode(tx, newNode) if err != ErrNodeKeyAlreadyExists && err != nil { return err } // go up until the root
newRootKey, err := mt.recalculatePathUntilRoot(tx, path, newNode, siblings[:i]) if err != nil { return err } mt.rootKey = newRootKey err = mt.setCurrentRoot(tx, mt.rootKey) if err != nil { return err } break } // if i==0 (root position), stop and store the sibling of the
// deleted leaf as root
if i == 0 { mt.rootKey = toUpload err := mt.setCurrentRoot(tx, mt.rootKey) if err != nil { return err } break } } if err := tx.Commit(); err != nil { return err }
return nil }
// recalculatePathUntilRoot recalculates the nodes until the Root
func (mt *MerkleTree) recalculatePathUntilRoot(tx Tx, path []bool, node *Node, siblings []*Hash) (*Hash, error) { for i := len(siblings) - 1; i >= 0; i-- { nodeKey, err := node.Key() if err != nil { return nil, err } if path[i] { node = NewNodeMiddle(siblings[i], nodeKey) } else { node = NewNodeMiddle(nodeKey, siblings[i]) } _, err = mt.addNode(tx, node) if err != ErrNodeKeyAlreadyExists && err != nil { return nil, err } }
// return last node added, which is the root
nodeKey, err := node.Key() return nodeKey, err }
// setCurrentRoot is a helper function to update current root in an open db
// transaction.
func (mt *MerkleTree) setCurrentRoot(tx Tx, hash *Hash) error { return tx.SetRoot(hash) }
// GetNode gets a node by key from the MT. Empty nodes are not stored in the
// tree; they are all the same and assumed to always exist.
func (mt *MerkleTree) GetNode(key *Hash) (*Node, error) { if bytes.Equal(key[:], HashZero[:]) { return NewNodeEmpty(), nil } n, err := mt.db.Get(key[:]) if err != nil { return nil, err } return n, nil }
// getPath returns the binary path, from the root to the leaf.
func getPath(numLevels int, k []byte) []bool { path := make([]bool, numLevels) for n := 0; n < numLevels; n++ { path[n] = TestBit(k[:], uint(n)) } return path }
// NodeAux contains the auxiliary node used in a non-existence proof.
type NodeAux struct { Key *Hash Value *Hash }
// Proof defines the required elements for a MT proof of existence or
// non-existence.
type Proof struct { // existence indicates wether this is a proof of existence or
// non-existence.
Existence bool // depth indicates how deep in the tree the proof goes.
depth uint // notempties is a bitmap of non-empty Siblings found in Siblings.
notempties [ElemBytesLen - proofFlagsLen]byte // Siblings is a list of non-empty sibling keys.
Siblings []*Hash NodeAux *NodeAux }
// NewProofFromBytes parses a byte array into a Proof.
func NewProofFromBytes(bs []byte) (*Proof, error) { if len(bs) < ElemBytesLen { return nil, ErrInvalidProofBytes } p := &Proof{} if (bs[0] & 0x01) == 0 { p.Existence = true } p.depth = uint(bs[1]) copy(p.notempties[:], bs[proofFlagsLen:ElemBytesLen]) siblingBytes := bs[ElemBytesLen:] sibIdx := 0 for i := uint(0); i < p.depth; i++ { if TestBitBigEndian(p.notempties[:], i) { if len(siblingBytes) < (sibIdx+1)*ElemBytesLen { return nil, ErrInvalidProofBytes } var sib Hash copy(sib[:], siblingBytes[sibIdx*ElemBytesLen:(sibIdx+1)*ElemBytesLen]) p.Siblings = append(p.Siblings, &sib) sibIdx++ } }
if !p.Existence && ((bs[0] & 0x02) != 0) { p.NodeAux = &NodeAux{Key: &Hash{}, Value: &Hash{}} nodeAuxBytes := siblingBytes[len(p.Siblings)*ElemBytesLen:] if len(nodeAuxBytes) != 2*ElemBytesLen { return nil, ErrInvalidProofBytes } copy(p.NodeAux.Key[:], nodeAuxBytes[:ElemBytesLen]) copy(p.NodeAux.Value[:], nodeAuxBytes[ElemBytesLen:2*ElemBytesLen]) } return p, nil }
// Bytes serializes a Proof into a byte array.
func (p *Proof) Bytes() []byte { bsLen := proofFlagsLen + len(p.notempties) + ElemBytesLen*len(p.Siblings) if p.NodeAux != nil { bsLen += 2 * ElemBytesLen //nolint:gomnd
} bs := make([]byte, bsLen)
if !p.Existence { bs[0] |= 0x01 } bs[1] = byte(p.depth) copy(bs[proofFlagsLen:len(p.notempties)+proofFlagsLen], p.notempties[:]) siblingsBytes := bs[len(p.notempties)+proofFlagsLen:] for i, k := range p.Siblings { copy(siblingsBytes[i*ElemBytesLen:(i+1)*ElemBytesLen], k[:]) } if p.NodeAux != nil { bs[0] |= 0x02 copy(bs[len(bs)-2*ElemBytesLen:], p.NodeAux.Key[:]) copy(bs[len(bs)-1*ElemBytesLen:], p.NodeAux.Value[:]) } return bs }
// SiblingsFromProof returns all the siblings of the proof.
func SiblingsFromProof(proof *Proof) []*Hash { sibIdx := 0 siblings := []*Hash{} for lvl := 0; lvl < int(proof.depth); lvl++ { if TestBitBigEndian(proof.notempties[:], uint(lvl)) { siblings = append(siblings, proof.Siblings[sibIdx]) sibIdx++ } else { siblings = append(siblings, &HashZero) } } return siblings }
// AllSiblings returns all the siblings of the proof.
func (p *Proof) AllSiblings() []*Hash { return SiblingsFromProof(p) }
// CircomSiblingsFromSiblings returns the full siblings compatible with circom
func CircomSiblingsFromSiblings(siblings []*Hash, levels int) []*Hash { // Add the rest of empty levels to the siblings
for i := len(siblings); i < levels+1; i++ { siblings = append(siblings, &HashZero) } return siblings }
// CircomProcessorProof defines the ProcessorProof compatible with circom. Is
// the data of the proof between the transition from one state to another.
type CircomProcessorProof struct { OldRoot *Hash `json:"oldRoot"` NewRoot *Hash `json:"newRoot"` Siblings []*Hash `json:"siblings"` OldKey *Hash `json:"oldKey"` OldValue *Hash `json:"oldValue"` NewKey *Hash `json:"newKey"` NewValue *Hash `json:"newValue"` IsOld0 bool `json:"isOld0"` // 0: NOP, 1: Update, 2: Insert, 3: Delete
Fnc int `json:"fnc"` }
// String returns a human readable string representation of the
// CircomProcessorProof
func (p CircomProcessorProof) String() string { buf := bytes.NewBufferString("{") fmt.Fprintf(buf, " OldRoot: %v,\n", p.OldRoot) fmt.Fprintf(buf, " NewRoot: %v,\n", p.NewRoot) fmt.Fprintf(buf, " Siblings: [\n ") for _, s := range p.Siblings { fmt.Fprintf(buf, "%v, ", s) } fmt.Fprintf(buf, "\n ],\n") fmt.Fprintf(buf, " OldKey: %v,\n", p.OldKey) fmt.Fprintf(buf, " OldValue: %v,\n", p.OldValue) fmt.Fprintf(buf, " NewKey: %v,\n", p.NewKey) fmt.Fprintf(buf, " NewValue: %v,\n", p.NewValue) fmt.Fprintf(buf, " IsOld0: %v,\n", p.IsOld0) fmt.Fprintf(buf, "}\n")
return buf.String() }
// CircomVerifierProof defines the VerifierProof compatible with circom. Is the
// data of the proof that a certain leaf exists in the MerkleTree.
type CircomVerifierProof struct { Root *Hash `json:"root"` Siblings []*Hash `json:"siblings"` OldKey *Hash `json:"oldKey"` OldValue *Hash `json:"oldValue"` IsOld0 bool `json:"isOld0"` Key *Hash `json:"key"` Value *Hash `json:"value"` Fnc int `json:"fnc"` // 0: inclusion, 1: non inclusion
}
// GenerateCircomVerifierProof returns the CircomVerifierProof for a certain
// key in the MerkleTree. If the rootKey is nil, the current merkletree root
// is used.
func (mt *MerkleTree) GenerateCircomVerifierProof(k *big.Int, rootKey *Hash) (*CircomVerifierProof, error) { cp, err := mt.GenerateSCVerifierProof(k, rootKey) if err != nil { return nil, err } cp.Siblings = CircomSiblingsFromSiblings(cp.Siblings, mt.maxLevels) return cp, nil }
// GenerateSCVerifierProof returns the CircomVerifierProof for a certain key in
// the MerkleTree with the Siblings without the extra 0 needed at the circom
// circuits, which makes it straight forward to verifiy inside a Smart
// Contract. If the rootKey is nil, the current merkletree root is used.
func (mt *MerkleTree) GenerateSCVerifierProof(k *big.Int, rootKey *Hash) (*CircomVerifierProof, error) { if rootKey == nil { rootKey = mt.Root() } p, v, err := mt.GenerateProof(k, rootKey) if err != nil && err != ErrKeyNotFound { return nil, err } var cp CircomVerifierProof cp.Root = rootKey cp.Siblings = p.AllSiblings() if p.NodeAux != nil { cp.OldKey = p.NodeAux.Key cp.OldValue = p.NodeAux.Value } else { cp.OldKey = &HashZero cp.OldValue = &HashZero } cp.Key = NewHashFromBigInt(k) cp.Value = NewHashFromBigInt(v) if p.Existence { cp.Fnc = 0 // inclusion
} else { cp.Fnc = 1 // non inclusion
}
return &cp, nil }
// GenerateProof generates the proof of existence (or non-existence) of an
// Entry's hash Index for a Merkle Tree given the root.
// If the rootKey is nil, the current merkletree root is used
func (mt *MerkleTree) GenerateProof(k *big.Int, rootKey *Hash) (*Proof, *big.Int, error) { p := &Proof{} var siblingKey *Hash
kHash := NewHashFromBigInt(k) path := getPath(mt.maxLevels, kHash[:]) if rootKey == nil { rootKey = mt.Root() } nextKey := rootKey for p.depth = 0; p.depth < uint(mt.maxLevels); p.depth++ { n, err := mt.GetNode(nextKey) if err != nil { return nil, nil, err } switch n.Type { case NodeTypeEmpty: return p, big.NewInt(0), nil case NodeTypeLeaf: if bytes.Equal(kHash[:], n.Entry[0][:]) { p.Existence = true return p, n.Entry[1].BigInt(), nil } // We found a leaf whose entry didn't match hIndex
p.NodeAux = &NodeAux{Key: n.Entry[0], Value: n.Entry[1]} return p, n.Entry[1].BigInt(), nil case NodeTypeMiddle: if path[p.depth] { nextKey = n.ChildR siblingKey = n.ChildL } else { nextKey = n.ChildL siblingKey = n.ChildR } default: return nil, nil, ErrInvalidNodeFound } if !bytes.Equal(siblingKey[:], HashZero[:]) { SetBitBigEndian(p.notempties[:], uint(p.depth)) p.Siblings = append(p.Siblings, siblingKey) } } return nil, nil, ErrKeyNotFound }
// VerifyProof verifies the Merkle Proof for the entry and root.
func VerifyProof(rootKey *Hash, proof *Proof, k, v *big.Int) bool { rootFromProof, err := RootFromProof(proof, k, v) if err != nil { return false } return bytes.Equal(rootKey[:], rootFromProof[:]) }
// RootFromProof calculates the root that would correspond to a tree whose
// siblings are the ones in the proof with the leaf hashing to hIndex and
// hValue.
func RootFromProof(proof *Proof, k, v *big.Int) (*Hash, error) { kHash := NewHashFromBigInt(k) vHash := NewHashFromBigInt(v) sibIdx := len(proof.Siblings) - 1 var err error var midKey *Hash if proof.Existence { midKey, err = LeafKey(kHash, vHash) if err != nil { return nil, err } } else { if proof.NodeAux == nil { midKey = &HashZero } else { if bytes.Equal(kHash[:], proof.NodeAux.Key[:]) { return nil, fmt.Errorf("Non-existence proof being checked against hIndex equal to nodeAux") } midKey, err = LeafKey(proof.NodeAux.Key, proof.NodeAux.Value) if err != nil { return nil, err } } } path := getPath(int(proof.depth), kHash[:]) var siblingKey *Hash for lvl := int(proof.depth) - 1; lvl >= 0; lvl-- { if TestBitBigEndian(proof.notempties[:], uint(lvl)) { siblingKey = proof.Siblings[sibIdx] sibIdx-- } else { siblingKey = &HashZero } if path[lvl] { midKey, err = NewNodeMiddle(siblingKey, midKey).Key() if err != nil { return nil, err } } else { midKey, err = NewNodeMiddle(midKey, siblingKey).Key() if err != nil { return nil, err } } } return midKey, nil }
// walk is a helper recursive function to iterate over all tree branches
func (mt *MerkleTree) walk(key *Hash, f func(*Node)) error { n, err := mt.GetNode(key) if err != nil { return err } switch n.Type { case NodeTypeEmpty: f(n) case NodeTypeLeaf: f(n) case NodeTypeMiddle: f(n) if err := mt.walk(n.ChildL, f); err != nil { return err } if err := mt.walk(n.ChildR, f); err != nil { return err } default: return ErrInvalidNodeFound } return nil }
// Walk iterates over all the branches of a MerkleTree with the given rootKey
// if rootKey is nil, it will get the current RootKey of the current state of
// the MerkleTree. For each node, it calls the f function given in the
// parameters. See some examples of the Walk function usage in the
// merkletree.go and merkletree_test.go
func (mt *MerkleTree) Walk(rootKey *Hash, f func(*Node)) error { if rootKey == nil { rootKey = mt.Root() } err := mt.walk(rootKey, f) return err }
// GraphViz uses Walk function to generate a string GraphViz representation of
// the tree and writes it to w
func (mt *MerkleTree) GraphViz(w io.Writer, rootKey *Hash) error { fmt.Fprintf(w, `digraph hierarchy { node [fontname=Monospace,fontsize=10,shape=box] `) cnt := 0 var errIn error err := mt.Walk(rootKey, func(n *Node) { k, err := n.Key() if err != nil { errIn = err } switch n.Type { case NodeTypeEmpty: case NodeTypeLeaf: fmt.Fprintf(w, "\"%v\" [style=filled];\n", k.String()) case NodeTypeMiddle: lr := [2]string{n.ChildL.String(), n.ChildR.String()} emptyNodes := "" for i := range lr { if lr[i] == "0" { lr[i] = fmt.Sprintf("empty%v", cnt) emptyNodes += fmt.Sprintf("\"%v\" [style=dashed,label=0];\n", lr[i]) cnt++ } } fmt.Fprintf(w, "\"%v\" -> {\"%v\" \"%v\"}\n", k.String(), lr[0], lr[1]) fmt.Fprint(w, emptyNodes) default: } }) fmt.Fprintf(w, "}\n") if errIn != nil { return errIn } return err }
// PrintGraphViz prints directly the GraphViz() output
func (mt *MerkleTree) PrintGraphViz(rootKey *Hash) error { if rootKey == nil { rootKey = mt.Root() } w := bytes.NewBufferString("") fmt.Fprintf(w, "--------\nGraphViz of the MerkleTree with RootKey "+rootKey.BigInt().String()+"\n") err := mt.GraphViz(w, nil) if err != nil { return err } fmt.Fprintf(w, "End of GraphViz of the MerkleTree with RootKey "+rootKey.BigInt().String()+"\n--------\n")
fmt.Println(w) return nil }
// DumpLeafs returns all the Leafs that exist under the given Root. If no Root
// is given (nil), it uses the current Root of the MerkleTree.
func (mt *MerkleTree) DumpLeafs(rootKey *Hash) ([]byte, error) { var b []byte err := mt.Walk(rootKey, func(n *Node) { if n.Type == NodeTypeLeaf { l := n.Entry[0].Bytes() r := n.Entry[1].Bytes() b = append(b, append(l[:], r[:]...)...) } }) return b, err }
// ImportDumpedLeafs parses and adds to the MerkleTree the dumped list of leafs
// from the DumpLeafs function.
func (mt *MerkleTree) ImportDumpedLeafs(b []byte) error { for i := 0; i < len(b); i += 64 { lr := b[i : i+64] lB, err := NewBigIntFromHashBytes(lr[:32]) if err != nil { return err } rB, err := NewBigIntFromHashBytes(lr[32:]) if err != nil { return err } err = mt.Add(lB, rB) if err != nil { return err } } return nil }
|