|
|
@ -2,6 +2,7 @@ package merkletree |
|
|
|
|
|
|
|
import ( |
|
|
|
"bytes" |
|
|
|
"encoding/hex" |
|
|
|
"errors" |
|
|
|
"fmt" |
|
|
|
"io" |
|
|
@ -57,6 +58,9 @@ type Hash [32]byte |
|
|
|
func (h Hash) String() string { |
|
|
|
return new(big.Int).SetBytes(h[:]).String() |
|
|
|
} |
|
|
|
func (h Hash) Hex() string { |
|
|
|
return hex.EncodeToString(h[:]) |
|
|
|
} |
|
|
|
|
|
|
|
// BigInt returns the *big.Int representation of the *Hash
|
|
|
|
func (h *Hash) BigInt() *big.Int { |
|
|
@ -392,6 +396,39 @@ func (p *Proof) Bytes() []byte { |
|
|
|
return bs |
|
|
|
} |
|
|
|
|
|
|
|
// SiblingsFromProof returns all the siblings of the proof. This function is used to generate the siblings input for the circom circuits.
|
|
|
|
func SiblingsFromProof(proof *Proof) []*Hash { |
|
|
|
sibIdx := 0 |
|
|
|
var siblings []*Hash |
|
|
|
for lvl := 0; lvl < int(proof.depth); lvl++ { |
|
|
|
if common.TestBitBigEndian(proof.notempties[:], uint(lvl)) { |
|
|
|
siblings = append(siblings, proof.Siblings[sibIdx]) |
|
|
|
sibIdx++ |
|
|
|
} else { |
|
|
|
siblings = append(siblings, &HashZero) |
|
|
|
} |
|
|
|
} |
|
|
|
return siblings |
|
|
|
} |
|
|
|
|
|
|
|
func (p *Proof) AllSiblings() []*Hash { |
|
|
|
return SiblingsFromProof(p) |
|
|
|
} |
|
|
|
|
|
|
|
func (p *Proof) AllSiblingsCircom(levels int) []*big.Int { |
|
|
|
siblings := p.AllSiblings() |
|
|
|
// Add the rest of empty levels to the siblings
|
|
|
|
for i := len(siblings); i < levels; i++ { |
|
|
|
siblings = append(siblings, &HashZero) |
|
|
|
} |
|
|
|
siblings = append(siblings, &HashZero) // add extra level for circom compatibility
|
|
|
|
siblingsBigInt := make([]*big.Int, len(siblings)) |
|
|
|
for i, sibling := range siblings { |
|
|
|
siblingsBigInt[i] = sibling.BigInt() |
|
|
|
} |
|
|
|
return siblingsBigInt |
|
|
|
} |
|
|
|
|
|
|
|
// GenerateProof generates the proof of existence (or non-existence) of an
|
|
|
|
// Entry's hash Index for a Merkle Tree given the root.
|
|
|
|
// If the rootKey is nil, the current merkletree root is used
|
|
|
|