You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1201 lines
32 KiB

package merkletree
import (
"bytes"
"encoding/hex"
"errors"
"fmt"
"io"
"math/big"
"strings"
"sync"
cryptoUtils "github.com/iden3/go-iden3-crypto/utils"
)
const (
// proofFlagsLen is the byte length of the flags in the proof header
// (first 32 bytes).
proofFlagsLen = 2
// ElemBytesLen is the length of the Hash byte array
ElemBytesLen = 32
numCharPrint = 8
)
var (
// ErrNodeKeyAlreadyExists is used when a node key already exists.
ErrNodeKeyAlreadyExists = errors.New("key already exists")
// ErrKeyNotFound is used when a key is not found in the MerkleTree.
ErrKeyNotFound = errors.New("Key not found in the MerkleTree")
// ErrNodeBytesBadSize is used when the data of a node has an incorrect
// size and can't be parsed.
ErrNodeBytesBadSize = errors.New("node data has incorrect size in the DB")
// ErrReachedMaxLevel is used when a traversal of the MT reaches the
// maximum level.
ErrReachedMaxLevel = errors.New("reached maximum level of the merkle tree")
// ErrInvalidNodeFound is used when an invalid node is found and can't
// be parsed.
ErrInvalidNodeFound = errors.New("found an invalid node in the DB")
// ErrInvalidProofBytes is used when a serialized proof is invalid.
ErrInvalidProofBytes = errors.New("the serialized proof is invalid")
// ErrInvalidDBValue is used when a value in the key value DB is
// invalid (for example, it doen't contain a byte header and a []byte
// body of at least len=1.
ErrInvalidDBValue = errors.New("the value in the DB is invalid")
// ErrEntryIndexAlreadyExists is used when the entry index already
// exists in the tree.
ErrEntryIndexAlreadyExists = errors.New("the entry index already exists in the tree")
// ErrNotWritable is used when the MerkleTree is not writable and a
// write function is called
ErrNotWritable = errors.New("Merkle Tree not writable")
dbKeyRootNode = []byte("currentroot")
// HashZero is used at Empty nodes
HashZero = Hash{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
)
// Hash is the generic type stored in the MerkleTree
type Hash [32]byte
// MarshalText implements the marshaler for the Hash type
func (h Hash) MarshalText() ([]byte, error) {
return []byte(h.BigInt().String()), nil
}
// UnmarshalText implements the unmarshaler for the Hash type
func (h *Hash) UnmarshalText(b []byte) error {
ha, err := NewHashFromString(string(b))
copy(h[:], ha[:])
return err
}
// String returns decimal representation in string format of the Hash
func (h Hash) String() string {
s := h.BigInt().String()
if len(s) < numCharPrint {
return s
}
return s[0:numCharPrint] + "..."
}
// Hex returns the hexadecimal representation of the Hash
func (h Hash) Hex() string {
return hex.EncodeToString(h[:])
// alternatively equivalent, but with too extra steps:
// bRaw := h.BigInt().Bytes()
// b := [32]byte{}
// copy(b[:], SwapEndianness(bRaw[:]))
// return hex.EncodeToString(b[:])
}
// BigInt returns the *big.Int representation of the *Hash
func (h *Hash) BigInt() *big.Int {
if new(big.Int).SetBytes(SwapEndianness(h[:])) == nil {
return big.NewInt(0)
}
return new(big.Int).SetBytes(SwapEndianness(h[:]))
}
// Bytes returns the []byte representation of the *Hash, which always is 32
// bytes length.
func (h *Hash) Bytes() []byte {
bi := new(big.Int).SetBytes(h[:]).Bytes()
b := [32]byte{}
copy(b[:], SwapEndianness(bi[:]))
return b[:]
}
// NewBigIntFromHashBytes returns a *big.Int from a byte array, swapping the
// endianness in the process. This is the intended method to get a *big.Int
// from a byte array that previously has ben generated by the Hash.Bytes()
// method.
func NewBigIntFromHashBytes(b []byte) (*big.Int, error) {
if len(b) != ElemBytesLen {
return nil, fmt.Errorf("Expected 32 bytes, found %d bytes", len(b))
}
bi := new(big.Int).SetBytes(b[:ElemBytesLen])
if !cryptoUtils.CheckBigIntInField(bi) {
return nil, fmt.Errorf("NewBigIntFromHashBytes: Value not inside the Finite Field")
}
return bi, nil
}
// NewHashFromBigInt returns a *Hash representation of the given *big.Int
func NewHashFromBigInt(b *big.Int) *Hash {
r := &Hash{}
copy(r[:], SwapEndianness(b.Bytes()))
return r
}
// NewHashFromBytes returns a *Hash from a byte array, swapping the endianness
// in the process. This is the intended method to get a *Hash from a byte array
// that previously has ben generated by the Hash.Bytes() method.
func NewHashFromBytes(b []byte) (*Hash, error) {
if len(b) != ElemBytesLen {
return nil, fmt.Errorf("Expected 32 bytes, found %d bytes", len(b))
}
var h Hash
copy(h[:], SwapEndianness(b))
return &h, nil
}
// NewHashFromHex returns a *Hash representation of the given hex string
func NewHashFromHex(h string) (*Hash, error) {
h = strings.TrimPrefix(h, "0x")
b, err := hex.DecodeString(h)
if err != nil {
return nil, err
}
return NewHashFromBytes(SwapEndianness(b[:]))
}
// NewHashFromString returns a *Hash representation of the given decimal string
func NewHashFromString(s string) (*Hash, error) {
bi, ok := new(big.Int).SetString(s, 10)
if !ok {
return nil, fmt.Errorf("Can not parse string to Hash")
}
return NewHashFromBigInt(bi), nil
}
// MerkleTree is the struct with the main elements of the MerkleTree
type MerkleTree struct {
sync.RWMutex
db Storage
rootKey *Hash
writable bool
maxLevels int
}
// NewMerkleTree loads a new MerkleTree. If in the storage already exists one
// will open that one, if not, will create a new one.
func NewMerkleTree(storage Storage, maxLevels int) (*MerkleTree, error) {
mt := MerkleTree{db: storage, maxLevels: maxLevels, writable: true}
root, err := mt.dbGetRoot()
if err == ErrNotFound {
tx, err := mt.db.NewTx()
if err != nil {
return nil, err
}
mt.rootKey = &HashZero
err = tx.SetRoot(mt.rootKey)
if err != nil {
return nil, err
}
err = tx.Commit()
if err != nil {
return nil, err
}
return &mt, nil
} else if err != nil {
return nil, err
}
mt.rootKey = root
return &mt, nil
}
func (mt *MerkleTree) dbGetRoot() (*Hash, error) {
hash, err := mt.db.GetRoot()
if err != nil {
return nil, err
}
return hash, nil
}
// DB returns the MerkleTree.DB()
func (mt *MerkleTree) DB() Storage {
return mt.db
}
// Root returns the MerkleRoot
func (mt *MerkleTree) Root() *Hash {
return mt.rootKey
}
// MaxLevels returns the MT maximum level
func (mt *MerkleTree) MaxLevels() int {
return mt.maxLevels
}
// Snapshot returns a read-only copy of the MerkleTree
func (mt *MerkleTree) Snapshot(rootKey *Hash) (*MerkleTree, error) {
mt.RLock()
defer mt.RUnlock()
_, err := mt.GetNode(rootKey)
if err != nil {
return nil, err
}
return &MerkleTree{db: mt.db, maxLevels: mt.maxLevels, rootKey: rootKey, writable: false}, nil
}
// Add adds a Key & Value into the MerkleTree. Where the `k` determines the
// path from the Root to the Leaf.
func (mt *MerkleTree) Add(k, v *big.Int) error {
// verify that the MerkleTree is writable
if !mt.writable {
return ErrNotWritable
}
// verify that k & v are valid and fit inside the Finite Field.
if !cryptoUtils.CheckBigIntInField(k) {
return errors.New("Key not inside the Finite Field")
}
if !cryptoUtils.CheckBigIntInField(v) {
return errors.New("Value not inside the Finite Field")
}
tx, err := mt.db.NewTx()
if err != nil {
return err
}
mt.Lock()
defer mt.Unlock()
kHash := NewHashFromBigInt(k)
vHash := NewHashFromBigInt(v)
newNodeLeaf := NewNodeLeaf(kHash, vHash)
path := getPath(mt.maxLevels, kHash[:])
newRootKey, err := mt.addLeaf(tx, newNodeLeaf, mt.rootKey, 0, path)
if err != nil {
return err
}
mt.rootKey = newRootKey
err = mt.setCurrentRoot(tx, mt.rootKey)
if err != nil {
return err
}
if err := tx.Commit(); err != nil {
return err
}
return nil
}
// AddAndGetCircomProof does an Add, and returns a CircomProcessorProof
func (mt *MerkleTree) AddAndGetCircomProof(k,
v *big.Int) (*CircomProcessorProof, error) {
var cp CircomProcessorProof
cp.Fnc = 2
cp.OldRoot = mt.rootKey
gotK, gotV, _, err := mt.Get(k)
if err != nil && err != ErrKeyNotFound {
return nil, err
}
cp.OldKey = NewHashFromBigInt(gotK)
cp.OldValue = NewHashFromBigInt(gotV)
if bytes.Equal(cp.OldKey[:], HashZero[:]) {
cp.IsOld0 = true
}
_, _, siblings, err := mt.Get(k)
if err != nil && err != ErrKeyNotFound {
return nil, err
}
cp.Siblings = CircomSiblingsFromSiblings(siblings, mt.maxLevels)
err = mt.Add(k, v)
if err != nil {
return nil, err
}
cp.NewKey = NewHashFromBigInt(k)
cp.NewValue = NewHashFromBigInt(v)
cp.NewRoot = mt.rootKey
return &cp, nil
}
// pushLeaf recursively pushes an existing oldLeaf down until its path diverges
// from newLeaf, at which point both leafs are stored, all while updating the
// path.
func (mt *MerkleTree) pushLeaf(tx Tx, newLeaf *Node, oldLeaf *Node, lvl int,
pathNewLeaf []bool, pathOldLeaf []bool) (*Hash, error) {
if lvl > mt.maxLevels-2 {
return nil, ErrReachedMaxLevel
}
var newNodeMiddle *Node
if pathNewLeaf[lvl] == pathOldLeaf[lvl] { // We need to go deeper!
nextKey, err := mt.pushLeaf(tx, newLeaf, oldLeaf, lvl+1, pathNewLeaf, pathOldLeaf)
if err != nil {
return nil, err
}
if pathNewLeaf[lvl] { // go right
newNodeMiddle = NewNodeMiddle(&HashZero, nextKey)
} else { // go left
newNodeMiddle = NewNodeMiddle(nextKey, &HashZero)
}
return mt.addNode(tx, newNodeMiddle)
}
oldLeafKey, err := oldLeaf.Key()
if err != nil {
return nil, err
}
newLeafKey, err := newLeaf.Key()
if err != nil {
return nil, err
}
if pathNewLeaf[lvl] {
newNodeMiddle = NewNodeMiddle(oldLeafKey, newLeafKey)
} else {
newNodeMiddle = NewNodeMiddle(newLeafKey, oldLeafKey)
}
// We can add newLeaf now. We don't need to add oldLeaf because it's
// already in the tree.
_, err = mt.addNode(tx, newLeaf)
if err != nil {
return nil, err
}
return mt.addNode(tx, newNodeMiddle)
}
// addLeaf recursively adds a newLeaf in the MT while updating the path.
func (mt *MerkleTree) addLeaf(tx Tx, newLeaf *Node, key *Hash,
lvl int, path []bool) (*Hash, error) {
var err error
var nextKey *Hash
if lvl > mt.maxLevels-1 {
return nil, ErrReachedMaxLevel
}
n, err := mt.GetNode(key)
if err != nil {
return nil, err
}
switch n.Type {
case NodeTypeEmpty:
// We can add newLeaf now
return mt.addNode(tx, newLeaf)
case NodeTypeLeaf:
nKey := n.Entry[0]
// Check if leaf node found contains the leaf node we are
// trying to add
newLeafKey := newLeaf.Entry[0]
if bytes.Equal(nKey[:], newLeafKey[:]) {
return nil, ErrEntryIndexAlreadyExists
}
pathOldLeaf := getPath(mt.maxLevels, nKey[:])
// We need to push newLeaf down until its path diverges from
// n's path
return mt.pushLeaf(tx, newLeaf, n, lvl, path, pathOldLeaf)
case NodeTypeMiddle:
// We need to go deeper, continue traversing the tree, left or
// right depending on path
var newNodeMiddle *Node
if path[lvl] { // go right
nextKey, err = mt.addLeaf(tx, newLeaf, n.ChildR, lvl+1, path)
newNodeMiddle = NewNodeMiddle(n.ChildL, nextKey)
} else { // go left
nextKey, err = mt.addLeaf(tx, newLeaf, n.ChildL, lvl+1, path)
newNodeMiddle = NewNodeMiddle(nextKey, n.ChildR)
}
if err != nil {
return nil, err
}
// Update the node to reflect the modified child
return mt.addNode(tx, newNodeMiddle)
default:
return nil, ErrInvalidNodeFound
}
}
// addNode adds a node into the MT. Empty nodes are not stored in the tree;
// they are all the same and assumed to always exist.
func (mt *MerkleTree) addNode(tx Tx, n *Node) (*Hash, error) {
// verify that the MerkleTree is writable
if !mt.writable {
return nil, ErrNotWritable
}
if n.Type == NodeTypeEmpty {
return n.Key()
}
k, err := n.Key()
if err != nil {
return nil, err
}
//v := n.Value()
// Check that the node key doesn't already exist
if _, err := tx.Get(k[:]); err == nil {
return nil, ErrNodeKeyAlreadyExists
}
err = tx.Put(k[:], n)
return k, err
}
// updateNode updates an existing node in the MT. Empty nodes are not stored
// in the tree; they are all the same and assumed to always exist.
func (mt *MerkleTree) updateNode(tx Tx, n *Node) (*Hash, error) {
// verify that the MerkleTree is writable
if !mt.writable {
return nil, ErrNotWritable
}
if n.Type == NodeTypeEmpty {
return n.Key()
}
k, err := n.Key()
if err != nil {
return nil, err
}
//v := n.Value()
err = tx.Put(k[:], n)
return k, err
}
// Get returns the value of the leaf for the given key
func (mt *MerkleTree) Get(k *big.Int) (*big.Int, *big.Int, []*Hash, error) {
// verify that k is valid and fits inside the Finite Field.
if !cryptoUtils.CheckBigIntInField(k) {
return nil, nil, nil, errors.New("Key not inside the Finite Field")
}
kHash := NewHashFromBigInt(k)
path := getPath(mt.maxLevels, kHash[:])
nextKey := mt.rootKey
siblings := []*Hash{}
for i := 0; i < mt.maxLevels; i++ {
n, err := mt.GetNode(nextKey)
if err != nil {
return nil, nil, nil, err
}
switch n.Type {
case NodeTypeEmpty:
return big.NewInt(0), big.NewInt(0), siblings, ErrKeyNotFound
case NodeTypeLeaf:
if bytes.Equal(kHash[:], n.Entry[0][:]) {
return n.Entry[0].BigInt(), n.Entry[1].BigInt(), siblings, nil
}
return n.Entry[0].BigInt(), n.Entry[1].BigInt(), siblings, ErrKeyNotFound
case NodeTypeMiddle:
if path[i] {
nextKey = n.ChildR
siblings = append(siblings, n.ChildL)
} else {
nextKey = n.ChildL
siblings = append(siblings, n.ChildR)
}
default:
return nil, nil, nil, ErrInvalidNodeFound
}
}
return nil, nil, nil, ErrReachedMaxLevel
}
// Update updates the value of a specified key in the MerkleTree, and updates
// the path from the leaf to the Root with the new values. Returns the
// CircomProcessorProof.
func (mt *MerkleTree) Update(k, v *big.Int) (*CircomProcessorProof, error) {
// verify that the MerkleTree is writable
if !mt.writable {
return nil, ErrNotWritable
}
// verify that k & v are valid and fit inside the Finite Field.
if !cryptoUtils.CheckBigIntInField(k) {
return nil, errors.New("Key not inside the Finite Field")
}
if !cryptoUtils.CheckBigIntInField(v) {
return nil, errors.New("Key not inside the Finite Field")
}
tx, err := mt.db.NewTx()
if err != nil {
return nil, err
}
mt.Lock()
defer mt.Unlock()
kHash := NewHashFromBigInt(k)
vHash := NewHashFromBigInt(v)
path := getPath(mt.maxLevels, kHash[:])
var cp CircomProcessorProof
cp.Fnc = 1
cp.OldRoot = mt.rootKey
cp.OldKey = kHash
cp.NewKey = kHash
cp.NewValue = vHash
nextKey := mt.rootKey
siblings := []*Hash{}
for i := 0; i < mt.maxLevels; i++ {
n, err := mt.GetNode(nextKey)
if err != nil {
return nil, err
}
switch n.Type {
case NodeTypeEmpty:
return nil, ErrKeyNotFound
case NodeTypeLeaf:
if bytes.Equal(kHash[:], n.Entry[0][:]) {
cp.OldValue = n.Entry[1]
cp.Siblings = CircomSiblingsFromSiblings(siblings, mt.maxLevels)
// update leaf and upload to the root
newNodeLeaf := NewNodeLeaf(kHash, vHash)
_, err := mt.updateNode(tx, newNodeLeaf)
if err != nil {
return nil, err
}
newRootKey, err :=
mt.recalculatePathUntilRoot(tx, path, newNodeLeaf, siblings)
if err != nil {
return nil, err
}
mt.rootKey = newRootKey
err = mt.setCurrentRoot(tx, mt.rootKey)
if err != nil {
return nil, err
}
cp.NewRoot = newRootKey
if err := tx.Commit(); err != nil {
return nil, err
}
return &cp, nil
}
return nil, ErrKeyNotFound
case NodeTypeMiddle:
if path[i] {
nextKey = n.ChildR
siblings = append(siblings, n.ChildL)
} else {
nextKey = n.ChildL
siblings = append(siblings, n.ChildR)
}
default:
return nil, ErrInvalidNodeFound
}
}
return nil, ErrKeyNotFound
}
// Delete removes the specified Key from the MerkleTree and updates the path
// from the deleted key to the Root with the new values. This method removes
// the key from the MerkleTree, but does not remove the old nodes from the
// key-value database; this means that if the tree is accessed by an old Root
// where the key was not deleted yet, the key will still exist. If is desired
// to remove the key-values from the database that are not under the current
// Root, an option could be to dump all the leaves (using mt.DumpLeafs) and
// import them in a new MerkleTree in a new database (using
// mt.ImportDumpedLeafs), but this will loose all the Root history of the
// MerkleTree
func (mt *MerkleTree) Delete(k *big.Int) error {
// verify that the MerkleTree is writable
if !mt.writable {
return ErrNotWritable
}
// verify that k is valid and fits inside the Finite Field.
if !cryptoUtils.CheckBigIntInField(k) {
return errors.New("Key not inside the Finite Field")
}
tx, err := mt.db.NewTx()
if err != nil {
return err
}
mt.Lock()
defer mt.Unlock()
kHash := NewHashFromBigInt(k)
path := getPath(mt.maxLevels, kHash[:])
nextKey := mt.rootKey
siblings := []*Hash{}
for i := 0; i < mt.maxLevels; i++ {
n, err := mt.GetNode(nextKey)
if err != nil {
return err
}
switch n.Type {
case NodeTypeEmpty:
return ErrKeyNotFound
case NodeTypeLeaf:
if bytes.Equal(kHash[:], n.Entry[0][:]) {
// remove and go up with the sibling
err = mt.rmAndUpload(tx, path, kHash, siblings)
return err
}
return ErrKeyNotFound
case NodeTypeMiddle:
if path[i] {
nextKey = n.ChildR
siblings = append(siblings, n.ChildL)
} else {
nextKey = n.ChildL
siblings = append(siblings, n.ChildR)
}
default:
return ErrInvalidNodeFound
}
}
return ErrKeyNotFound
}
// rmAndUpload removes the key, and goes up until the root updating all the
// nodes with the new values.
func (mt *MerkleTree) rmAndUpload(tx Tx, path []bool, kHash *Hash, siblings []*Hash) error {
if len(siblings) == 0 {
mt.rootKey = &HashZero
err := mt.setCurrentRoot(tx, mt.rootKey)
if err != nil {
return err
}
return tx.Commit()
}
toUpload := siblings[len(siblings)-1]
if len(siblings) < 2 { //nolint:gomnd
mt.rootKey = siblings[0]
err := mt.setCurrentRoot(tx, mt.rootKey)
if err != nil {
return err
}
return tx.Commit()
}
for i := len(siblings) - 2; i >= 0; i-- { //nolint:gomnd
if !bytes.Equal(siblings[i][:], HashZero[:]) {
var newNode *Node
if path[i] {
newNode = NewNodeMiddle(siblings[i], toUpload)
} else {
newNode = NewNodeMiddle(toUpload, siblings[i])
}
_, err := mt.addNode(tx, newNode)
if err != ErrNodeKeyAlreadyExists && err != nil {
return err
}
// go up until the root
newRootKey, err := mt.recalculatePathUntilRoot(tx, path, newNode,
siblings[:i])
if err != nil {
return err
}
mt.rootKey = newRootKey
err = mt.setCurrentRoot(tx, mt.rootKey)
if err != nil {
return err
}
break
}
// if i==0 (root position), stop and store the sibling of the
// deleted leaf as root
if i == 0 {
mt.rootKey = toUpload
err := mt.setCurrentRoot(tx, mt.rootKey)
if err != nil {
return err
}
break
}
}
if err := tx.Commit(); err != nil {
return err
}
return nil
}
// recalculatePathUntilRoot recalculates the nodes until the Root
func (mt *MerkleTree) recalculatePathUntilRoot(tx Tx, path []bool, node *Node,
siblings []*Hash) (*Hash, error) {
for i := len(siblings) - 1; i >= 0; i-- {
nodeKey, err := node.Key()
if err != nil {
return nil, err
}
if path[i] {
node = NewNodeMiddle(siblings[i], nodeKey)
} else {
node = NewNodeMiddle(nodeKey, siblings[i])
}
_, err = mt.addNode(tx, node)
if err != ErrNodeKeyAlreadyExists && err != nil {
return nil, err
}
}
// return last node added, which is the root
nodeKey, err := node.Key()
return nodeKey, err
}
// setCurrentRoot is a helper function to update current root in an open db
// transaction.
func (mt *MerkleTree) setCurrentRoot(tx Tx, hash *Hash) error {
return tx.SetRoot(hash)
}
// GetNode gets a node by key from the MT. Empty nodes are not stored in the
// tree; they are all the same and assumed to always exist.
func (mt *MerkleTree) GetNode(key *Hash) (*Node, error) {
if bytes.Equal(key[:], HashZero[:]) {
return NewNodeEmpty(), nil
}
n, err := mt.db.Get(key[:])
if err != nil {
return nil, err
}
return n, nil
}
// getPath returns the binary path, from the root to the leaf.
func getPath(numLevels int, k []byte) []bool {
path := make([]bool, numLevels)
for n := 0; n < numLevels; n++ {
path[n] = TestBit(k[:], uint(n))
}
return path
}
// NodeAux contains the auxiliary node used in a non-existence proof.
type NodeAux struct {
Key *Hash
Value *Hash
}
// Proof defines the required elements for a MT proof of existence or
// non-existence.
type Proof struct {
// existence indicates wether this is a proof of existence or
// non-existence.
Existence bool
// depth indicates how deep in the tree the proof goes.
depth uint
// notempties is a bitmap of non-empty Siblings found in Siblings.
notempties [ElemBytesLen - proofFlagsLen]byte
// Siblings is a list of non-empty sibling keys.
Siblings []*Hash
NodeAux *NodeAux
}
// NewProofFromBytes parses a byte array into a Proof.
func NewProofFromBytes(bs []byte) (*Proof, error) {
if len(bs) < ElemBytesLen {
return nil, ErrInvalidProofBytes
}
p := &Proof{}
if (bs[0] & 0x01) == 0 {
p.Existence = true
}
p.depth = uint(bs[1])
copy(p.notempties[:], bs[proofFlagsLen:ElemBytesLen])
siblingBytes := bs[ElemBytesLen:]
sibIdx := 0
for i := uint(0); i < p.depth; i++ {
if TestBitBigEndian(p.notempties[:], i) {
if len(siblingBytes) < (sibIdx+1)*ElemBytesLen {
return nil, ErrInvalidProofBytes
}
var sib Hash
copy(sib[:], siblingBytes[sibIdx*ElemBytesLen:(sibIdx+1)*ElemBytesLen])
p.Siblings = append(p.Siblings, &sib)
sibIdx++
}
}
if !p.Existence && ((bs[0] & 0x02) != 0) {
p.NodeAux = &NodeAux{Key: &Hash{}, Value: &Hash{}}
nodeAuxBytes := siblingBytes[len(p.Siblings)*ElemBytesLen:]
if len(nodeAuxBytes) != 2*ElemBytesLen {
return nil, ErrInvalidProofBytes
}
copy(p.NodeAux.Key[:], nodeAuxBytes[:ElemBytesLen])
copy(p.NodeAux.Value[:], nodeAuxBytes[ElemBytesLen:2*ElemBytesLen])
}
return p, nil
}
// Bytes serializes a Proof into a byte array.
func (p *Proof) Bytes() []byte {
bsLen := proofFlagsLen + len(p.notempties) + ElemBytesLen*len(p.Siblings)
if p.NodeAux != nil {
bsLen += 2 * ElemBytesLen //nolint:gomnd
}
bs := make([]byte, bsLen)
if !p.Existence {
bs[0] |= 0x01
}
bs[1] = byte(p.depth)
copy(bs[proofFlagsLen:len(p.notempties)+proofFlagsLen], p.notempties[:])
siblingsBytes := bs[len(p.notempties)+proofFlagsLen:]
for i, k := range p.Siblings {
copy(siblingsBytes[i*ElemBytesLen:(i+1)*ElemBytesLen], k[:])
}
if p.NodeAux != nil {
bs[0] |= 0x02
copy(bs[len(bs)-2*ElemBytesLen:], p.NodeAux.Key[:])
copy(bs[len(bs)-1*ElemBytesLen:], p.NodeAux.Value[:])
}
return bs
}
// SiblingsFromProof returns all the siblings of the proof.
func SiblingsFromProof(proof *Proof) []*Hash {
sibIdx := 0
siblings := []*Hash{}
for lvl := 0; lvl < int(proof.depth); lvl++ {
if TestBitBigEndian(proof.notempties[:], uint(lvl)) {
siblings = append(siblings, proof.Siblings[sibIdx])
sibIdx++
} else {
siblings = append(siblings, &HashZero)
}
}
return siblings
}
// AllSiblings returns all the siblings of the proof.
func (p *Proof) AllSiblings() []*Hash {
return SiblingsFromProof(p)
}
// CircomSiblingsFromSiblings returns the full siblings compatible with circom
func CircomSiblingsFromSiblings(siblings []*Hash, levels int) []*Hash {
// Add the rest of empty levels to the siblings
for i := len(siblings); i < levels+1; i++ {
siblings = append(siblings, &HashZero)
}
return siblings
}
// CircomProcessorProof defines the ProcessorProof compatible with circom. Is
// the data of the proof between the transition from one state to another.
type CircomProcessorProof struct {
OldRoot *Hash `json:"oldRoot"`
NewRoot *Hash `json:"newRoot"`
Siblings []*Hash `json:"siblings"`
OldKey *Hash `json:"oldKey"`
OldValue *Hash `json:"oldValue"`
NewKey *Hash `json:"newKey"`
NewValue *Hash `json:"newValue"`
IsOld0 bool `json:"isOld0"`
// 0: NOP, 1: Update, 2: Insert, 3: Delete
Fnc int `json:"fnc"`
}
// String returns a human readable string representation of the
// CircomProcessorProof
func (p CircomProcessorProof) String() string {
buf := bytes.NewBufferString("{")
fmt.Fprintf(buf, " OldRoot: %v,\n", p.OldRoot)
fmt.Fprintf(buf, " NewRoot: %v,\n", p.NewRoot)
fmt.Fprintf(buf, " Siblings: [\n ")
for _, s := range p.Siblings {
fmt.Fprintf(buf, "%v, ", s)
}
fmt.Fprintf(buf, "\n ],\n")
fmt.Fprintf(buf, " OldKey: %v,\n", p.OldKey)
fmt.Fprintf(buf, " OldValue: %v,\n", p.OldValue)
fmt.Fprintf(buf, " NewKey: %v,\n", p.NewKey)
fmt.Fprintf(buf, " NewValue: %v,\n", p.NewValue)
fmt.Fprintf(buf, " IsOld0: %v,\n", p.IsOld0)
fmt.Fprintf(buf, "}\n")
return buf.String()
}
// CircomVerifierProof defines the VerifierProof compatible with circom. Is the
// data of the proof that a certain leaf exists in the MerkleTree.
type CircomVerifierProof struct {
Root *Hash `json:"root"`
Siblings []*Hash `json:"siblings"`
OldKey *Hash `json:"oldKey"`
OldValue *Hash `json:"oldValue"`
IsOld0 bool `json:"isOld0"`
Key *Hash `json:"key"`
Value *Hash `json:"value"`
Fnc int `json:"fnc"` // 0: inclusion, 1: non inclusion
}
// GenerateCircomVerifierProof returns the CircomVerifierProof for a certain
// key in the MerkleTree. If the rootKey is nil, the current merkletree root
// is used.
func (mt *MerkleTree) GenerateCircomVerifierProof(k *big.Int,
rootKey *Hash) (*CircomVerifierProof, error) {
cp, err := mt.GenerateSCVerifierProof(k, rootKey)
if err != nil {
return nil, err
}
cp.Siblings = CircomSiblingsFromSiblings(cp.Siblings, mt.maxLevels)
return cp, nil
}
// GenerateSCVerifierProof returns the CircomVerifierProof for a certain key in
// the MerkleTree with the Siblings without the extra 0 needed at the circom
// circuits, which makes it straight forward to verifiy inside a Smart
// Contract. If the rootKey is nil, the current merkletree root is used.
func (mt *MerkleTree) GenerateSCVerifierProof(k *big.Int,
rootKey *Hash) (*CircomVerifierProof, error) {
if rootKey == nil {
rootKey = mt.Root()
}
p, v, err := mt.GenerateProof(k, rootKey)
if err != nil && err != ErrKeyNotFound {
return nil, err
}
var cp CircomVerifierProof
cp.Root = rootKey
cp.Siblings = p.AllSiblings()
if p.NodeAux != nil {
cp.OldKey = p.NodeAux.Key
cp.OldValue = p.NodeAux.Value
} else {
cp.OldKey = &HashZero
cp.OldValue = &HashZero
}
cp.Key = NewHashFromBigInt(k)
cp.Value = NewHashFromBigInt(v)
if p.Existence {
cp.Fnc = 0 // inclusion
} else {
cp.Fnc = 1 // non inclusion
}
return &cp, nil
}
// GenerateProof generates the proof of existence (or non-existence) of an
// Entry's hash Index for a Merkle Tree given the root.
// If the rootKey is nil, the current merkletree root is used
func (mt *MerkleTree) GenerateProof(k *big.Int, rootKey *Hash) (*Proof,
*big.Int, error) {
p := &Proof{}
var siblingKey *Hash
kHash := NewHashFromBigInt(k)
path := getPath(mt.maxLevels, kHash[:])
if rootKey == nil {
rootKey = mt.Root()
}
nextKey := rootKey
for p.depth = 0; p.depth < uint(mt.maxLevels); p.depth++ {
n, err := mt.GetNode(nextKey)
if err != nil {
return nil, nil, err
}
switch n.Type {
case NodeTypeEmpty:
return p, big.NewInt(0), nil
case NodeTypeLeaf:
if bytes.Equal(kHash[:], n.Entry[0][:]) {
p.Existence = true
return p, n.Entry[1].BigInt(), nil
}
// We found a leaf whose entry didn't match hIndex
p.NodeAux = &NodeAux{Key: n.Entry[0], Value: n.Entry[1]}
return p, n.Entry[1].BigInt(), nil
case NodeTypeMiddle:
if path[p.depth] {
nextKey = n.ChildR
siblingKey = n.ChildL
} else {
nextKey = n.ChildL
siblingKey = n.ChildR
}
default:
return nil, nil, ErrInvalidNodeFound
}
if !bytes.Equal(siblingKey[:], HashZero[:]) {
SetBitBigEndian(p.notempties[:], uint(p.depth))
p.Siblings = append(p.Siblings, siblingKey)
}
}
return nil, nil, ErrKeyNotFound
}
// VerifyProof verifies the Merkle Proof for the entry and root.
func VerifyProof(rootKey *Hash, proof *Proof, k, v *big.Int) bool {
rootFromProof, err := RootFromProof(proof, k, v)
if err != nil {
return false
}
return bytes.Equal(rootKey[:], rootFromProof[:])
}
// RootFromProof calculates the root that would correspond to a tree whose
// siblings are the ones in the proof with the leaf hashing to hIndex and
// hValue.
func RootFromProof(proof *Proof, k, v *big.Int) (*Hash, error) {
kHash := NewHashFromBigInt(k)
vHash := NewHashFromBigInt(v)
sibIdx := len(proof.Siblings) - 1
var err error
var midKey *Hash
if proof.Existence {
midKey, err = LeafKey(kHash, vHash)
if err != nil {
return nil, err
}
} else {
if proof.NodeAux == nil {
midKey = &HashZero
} else {
if bytes.Equal(kHash[:], proof.NodeAux.Key[:]) {
return nil,
fmt.Errorf("Non-existence proof being checked against hIndex equal to nodeAux")
}
midKey, err = LeafKey(proof.NodeAux.Key, proof.NodeAux.Value)
if err != nil {
return nil, err
}
}
}
path := getPath(int(proof.depth), kHash[:])
var siblingKey *Hash
for lvl := int(proof.depth) - 1; lvl >= 0; lvl-- {
if TestBitBigEndian(proof.notempties[:], uint(lvl)) {
siblingKey = proof.Siblings[sibIdx]
sibIdx--
} else {
siblingKey = &HashZero
}
if path[lvl] {
midKey, err = NewNodeMiddle(siblingKey, midKey).Key()
if err != nil {
return nil, err
}
} else {
midKey, err = NewNodeMiddle(midKey, siblingKey).Key()
if err != nil {
return nil, err
}
}
}
return midKey, nil
}
// walk is a helper recursive function to iterate over all tree branches
func (mt *MerkleTree) walk(key *Hash, f func(*Node)) error {
n, err := mt.GetNode(key)
if err != nil {
return err
}
switch n.Type {
case NodeTypeEmpty:
f(n)
case NodeTypeLeaf:
f(n)
case NodeTypeMiddle:
f(n)
if err := mt.walk(n.ChildL, f); err != nil {
return err
}
if err := mt.walk(n.ChildR, f); err != nil {
return err
}
default:
return ErrInvalidNodeFound
}
return nil
}
// Walk iterates over all the branches of a MerkleTree with the given rootKey
// if rootKey is nil, it will get the current RootKey of the current state of
// the MerkleTree. For each node, it calls the f function given in the
// parameters. See some examples of the Walk function usage in the
// merkletree.go and merkletree_test.go
func (mt *MerkleTree) Walk(rootKey *Hash, f func(*Node)) error {
if rootKey == nil {
rootKey = mt.Root()
}
err := mt.walk(rootKey, f)
return err
}
// GraphViz uses Walk function to generate a string GraphViz representation of
// the tree and writes it to w
func (mt *MerkleTree) GraphViz(w io.Writer, rootKey *Hash) error {
fmt.Fprintf(w, `digraph hierarchy {
node [fontname=Monospace,fontsize=10,shape=box]
`)
cnt := 0
var errIn error
err := mt.Walk(rootKey, func(n *Node) {
k, err := n.Key()
if err != nil {
errIn = err
}
switch n.Type {
case NodeTypeEmpty:
case NodeTypeLeaf:
fmt.Fprintf(w, "\"%v\" [style=filled];\n", k.String())
case NodeTypeMiddle:
lr := [2]string{n.ChildL.String(), n.ChildR.String()}
emptyNodes := ""
for i := range lr {
if lr[i] == "0" {
lr[i] = fmt.Sprintf("empty%v", cnt)
emptyNodes += fmt.Sprintf("\"%v\" [style=dashed,label=0];\n", lr[i])
cnt++
}
}
fmt.Fprintf(w, "\"%v\" -> {\"%v\" \"%v\"}\n", k.String(), lr[0], lr[1])
fmt.Fprint(w, emptyNodes)
default:
}
})
fmt.Fprintf(w, "}\n")
if errIn != nil {
return errIn
}
return err
}
// PrintGraphViz prints directly the GraphViz() output
func (mt *MerkleTree) PrintGraphViz(rootKey *Hash) error {
if rootKey == nil {
rootKey = mt.Root()
}
w := bytes.NewBufferString("")
fmt.Fprintf(w,
"--------\nGraphViz of the MerkleTree with RootKey "+rootKey.BigInt().String()+"\n")
err := mt.GraphViz(w, nil)
if err != nil {
return err
}
fmt.Fprintf(w,
"End of GraphViz of the MerkleTree with RootKey "+rootKey.BigInt().String()+"\n--------\n")
fmt.Println(w)
return nil
}
// DumpLeafs returns all the Leafs that exist under the given Root. If no Root
// is given (nil), it uses the current Root of the MerkleTree.
func (mt *MerkleTree) DumpLeafs(rootKey *Hash) ([]byte, error) {
var b []byte
err := mt.Walk(rootKey, func(n *Node) {
if n.Type == NodeTypeLeaf {
l := n.Entry[0].Bytes()
r := n.Entry[1].Bytes()
b = append(b, append(l[:], r[:]...)...)
}
})
return b, err
}
// ImportDumpedLeafs parses and adds to the MerkleTree the dumped list of leafs
// from the DumpLeafs function.
func (mt *MerkleTree) ImportDumpedLeafs(b []byte) error {
for i := 0; i < len(b); i += 64 {
lr := b[i : i+64]
lB, err := NewBigIntFromHashBytes(lr[:32])
if err != nil {
return err
}
rB, err := NewBigIntFromHashBytes(lr[32:])
if err != nil {
return err
}
err = mt.Add(lB, rB)
if err != nil {
return err
}
}
return nil
}