You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

586 lines
16 KiB

package merkletree
import (
"bytes"
"errors"
"fmt"
"io"
"math/big"
"sync"
"github.com/iden3/go-iden3-core/common"
"github.com/iden3/go-iden3-core/db"
cryptoUtils "github.com/iden3/go-iden3-crypto/utils"
)
const (
// proofFlagsLen is the byte length of the flags in the proof header (first 32
// bytes).
proofFlagsLen = 2
// ElemBytesLen is the length of the Hash byte array
ElemBytesLen = 32
)
var (
// ErrNodeKeyAlreadyExists is used when a node key already exists.
ErrNodeKeyAlreadyExists = errors.New("node already exists")
// ErrEntryIndexNotFound is used when no entry is found for an index.
ErrEntryIndexNotFound = errors.New("node index not found in the DB")
// ErrNodeDataBadSize is used when the data of a node has an incorrect
// size and can't be parsed.
ErrNodeDataBadSize = errors.New("node data has incorrect size in the DB")
// ErrReachedMaxLevel is used when a traversal of the MT reaches the
// maximum level.
ErrReachedMaxLevel = errors.New("reached maximum level of the merkle tree")
// ErrInvalidNodeFound is used when an invalid node is found and can't
// be parsed.
ErrInvalidNodeFound = errors.New("found an invalid node in the DB")
// ErrInvalidProofBytes is used when a serialized proof is invalid.
ErrInvalidProofBytes = errors.New("the serialized proof is invalid")
// ErrInvalidDBValue is used when a value in the key value DB is
// invalid (for example, it doen't contain a byte header and a []byte
// body of at least len=1.
ErrInvalidDBValue = errors.New("the value in the DB is invalid")
// ErrEntryIndexAlreadyExists is used when the entry index already
// exists in the tree.
ErrEntryIndexAlreadyExists = errors.New("the entry index already exists in the tree")
// ErrNotWritable is used when the MerkleTree is not writable and a write function is called
ErrNotWritable = errors.New("Merkle Tree not writable")
rootNodeValue = []byte("currentroot")
HashZero = Hash{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
)
type Hash [32]byte
func (h Hash) String() string {
return new(big.Int).SetBytes(h[:]).String()
}
func (h *Hash) BigInt() *big.Int {
return new(big.Int).SetBytes(common.SwapEndianness(h[:]))
}
func NewHashFromBigInt(b *big.Int) *Hash {
r := &Hash{}
copy(r[:], common.SwapEndianness(b.Bytes()))
return r
}
type MerkleTree struct {
sync.RWMutex
db db.Storage
rootKey *Hash
writable bool
maxLevels int
}
func NewMerkleTree(storage db.Storage, maxLevels int) (*MerkleTree, error) {
mt := MerkleTree{db: storage, maxLevels: maxLevels, writable: true}
v, err := mt.db.Get(rootNodeValue)
if err != nil {
tx, err := mt.db.NewTx()
if err != nil {
return nil, err
}
mt.rootKey = &HashZero
tx.Put(rootNodeValue, mt.rootKey[:])
err = tx.Commit()
if err != nil {
return nil, err
}
return &mt, nil
}
mt.rootKey = &Hash{}
copy(mt.rootKey[:], v)
return &mt, nil
}
func (mt *MerkleTree) Root() *Hash {
return mt.rootKey
}
func (mt *MerkleTree) Add(k, v *big.Int) error {
// verify that the MerkleTree is writable
if !mt.writable {
return ErrNotWritable
}
// verfy that the ElemBytes are valid and fit inside the Finite Field.
if !cryptoUtils.CheckBigIntInField(k) {
return errors.New("Key not inside the Finite Field")
}
if !cryptoUtils.CheckBigIntInField(v) {
return errors.New("Value not inside the Finite Field")
}
tx, err := mt.db.NewTx()
if err != nil {
return err
}
mt.Lock()
defer mt.Unlock()
kHash := NewHashFromBigInt(k)
vHash := NewHashFromBigInt(v)
newNodeLeaf := NewNodeLeaf(kHash, vHash)
path := getPath(mt.maxLevels, kHash[:])
newRootKey, err := mt.addLeaf(tx, newNodeLeaf, mt.rootKey, 0, path)
if err != nil {
return err
}
mt.rootKey = newRootKey
mt.dbInsert(tx, rootNodeValue, DBEntryTypeRoot, mt.rootKey[:])
if err := tx.Commit(); err != nil {
return err
}
return nil
}
// pushLeaf recursively pushes an existing oldLeaf down until its path diverges
// from newLeaf, at which point both leafs are stored, all while updating the
// path.
func (mt *MerkleTree) pushLeaf(tx db.Tx, newLeaf *Node, oldLeaf *Node,
lvl int, pathNewLeaf []bool, pathOldLeaf []bool) (*Hash, error) {
if lvl > mt.maxLevels-2 {
return nil, ErrReachedMaxLevel
}
var newNodeMiddle *Node
if pathNewLeaf[lvl] == pathOldLeaf[lvl] { // We need to go deeper!
nextKey, err := mt.pushLeaf(tx, newLeaf, oldLeaf, lvl+1, pathNewLeaf, pathOldLeaf)
if err != nil {
return nil, err
}
if pathNewLeaf[lvl] {
newNodeMiddle = NewNodeMiddle(&HashZero, nextKey) // go right
} else {
newNodeMiddle = NewNodeMiddle(nextKey, &HashZero) // go left
}
return mt.addNode(tx, newNodeMiddle)
} else {
oldLeafKey, err := oldLeaf.Key()
if err != nil {
return nil, err
}
newLeafKey, err := newLeaf.Key()
if err != nil {
return nil, err
}
if pathNewLeaf[lvl] {
newNodeMiddle = NewNodeMiddle(oldLeafKey, newLeafKey)
} else {
newNodeMiddle = NewNodeMiddle(newLeafKey, oldLeafKey)
}
// We can add newLeaf now. We don't need to add oldLeaf because it's already in the tree.
_, err = mt.addNode(tx, newLeaf)
if err != nil {
return nil, err
}
return mt.addNode(tx, newNodeMiddle)
}
}
// addLeaf recursively adds a newLeaf in the MT while updating the path.
func (mt *MerkleTree) addLeaf(tx db.Tx, newLeaf *Node, key *Hash,
lvl int, path []bool) (*Hash, error) {
var err error
var nextKey *Hash
if lvl > mt.maxLevels-1 {
return nil, ErrReachedMaxLevel
}
n, err := mt.GetNode(key)
if err != nil {
return nil, err
}
switch n.Type {
case NodeTypeEmpty:
// We can add newLeaf now
return mt.addNode(tx, newLeaf)
case NodeTypeLeaf:
nKey := n.Entry[0]
// Check if leaf node found contains the leaf node we are trying to add
newLeafKey := newLeaf.Entry[0]
if bytes.Equal(nKey[:], newLeafKey[:]) {
return nil, ErrEntryIndexAlreadyExists
}
pathOldLeaf := getPath(mt.maxLevels, nKey[:])
// We need to push newLeaf down until its path diverges from n's path
return mt.pushLeaf(tx, newLeaf, n, lvl, path, pathOldLeaf)
case NodeTypeMiddle:
// We need to go deeper, continue traversing the tree, left or right depending on path
var newNodeMiddle *Node
if path[lvl] {
nextKey, err = mt.addLeaf(tx, newLeaf, n.ChildR, lvl+1, path) // go right
newNodeMiddle = NewNodeMiddle(n.ChildL, nextKey)
} else {
nextKey, err = mt.addLeaf(tx, newLeaf, n.ChildL, lvl+1, path) // go left
newNodeMiddle = NewNodeMiddle(nextKey, n.ChildR)
}
if err != nil {
return nil, err
}
// Update the node to reflect the modified child
return mt.addNode(tx, newNodeMiddle)
default:
return nil, ErrInvalidNodeFound
}
}
// addNode adds a node into the MT. Empty nodes are not stored in the tree;
// they are all the same and assumed to always exist.
func (mt *MerkleTree) addNode(tx db.Tx, n *Node) (*Hash, error) {
// verify that the MerkleTree is writable
if !mt.writable {
return nil, ErrNotWritable
}
if n.Type == NodeTypeEmpty {
return n.Key()
}
k, err := n.Key()
if err != nil {
return nil, err
}
v := n.Value()
// Check that the node key doesn't already exist
if _, err := tx.Get(k[:]); err == nil {
return nil, ErrNodeKeyAlreadyExists
}
tx.Put(k[:], v)
return k, nil
}
// dbGet is a helper function to get the node of a key from the internal
// storage.
func (mt *MerkleTree) dbGet(k []byte) (NodeType, []byte, error) {
if bytes.Equal(k, HashZero[:]) {
return 0, nil, nil
}
value, err := mt.db.Get(k)
if err != nil {
return 0, nil, err
}
if len(value) < 2 {
return 0, nil, ErrInvalidDBValue
}
nodeType := value[0]
nodeBytes := value[1:]
return NodeType(nodeType), nodeBytes, nil
}
// dbInsert is a helper function to insert a node into a key in an open db
// transaction.
func (mt *MerkleTree) dbInsert(tx db.Tx, k []byte, t NodeType, data []byte) {
v := append([]byte{byte(t)}, data...)
tx.Put(k, v)
}
// GetNode gets a node by key from the MT. Empty nodes are not stored in the
// tree; they are all the same and assumed to always exist.
func (mt *MerkleTree) GetNode(key *Hash) (*Node, error) {
if bytes.Equal(key[:], HashZero[:]) {
return NewNodeEmpty(), nil
}
nBytes, err := mt.db.Get(key[:])
if err != nil {
return nil, err
}
return NewNodeFromBytes(nBytes)
}
// getPath returns the binary path, from the root to the leaf.
func getPath(numLevels int, k []byte) []bool {
path := make([]bool, numLevels)
for n := 0; n < numLevels; n++ {
path[n] = common.TestBit(k[:], uint(n))
}
return path
}
// NodeAux contains the auxiliary node used in a non-existence proof.
type NodeAux struct {
Key *Hash
Value *Hash
}
// Proof defines the required elements for a MT proof of existence or non-existence.
type Proof struct {
// existence indicates wether this is a proof of existence or non-existence.
Existence bool
// depth indicates how deep in the tree the proof goes.
depth uint
// notempties is a bitmap of non-empty Siblings found in Siblings.
notempties [ElemBytesLen - proofFlagsLen]byte
// Siblings is a list of non-empty sibling keys.
Siblings []*Hash
NodeAux *NodeAux
}
// NewProofFromBytes parses a byte array into a Proof.
func NewProofFromBytes(bs []byte) (*Proof, error) {
if len(bs) < ElemBytesLen {
return nil, ErrInvalidProofBytes
}
p := &Proof{}
if (bs[0] & 0x01) == 0 {
p.Existence = true
}
p.depth = uint(bs[1])
copy(p.notempties[:], bs[proofFlagsLen:ElemBytesLen])
siblingBytes := bs[ElemBytesLen:]
sibIdx := 0
for i := uint(0); i < p.depth; i++ {
if common.TestBitBigEndian(p.notempties[:], i) {
if len(siblingBytes) < (sibIdx+1)*ElemBytesLen {
return nil, ErrInvalidProofBytes
}
var sib Hash
copy(sib[:], siblingBytes[sibIdx*ElemBytesLen:(sibIdx+1)*ElemBytesLen])
p.Siblings = append(p.Siblings, &sib)
sibIdx++
}
}
if !p.Existence && ((bs[0] & 0x02) != 0) {
p.NodeAux = &NodeAux{Key: &Hash{}, Value: &Hash{}}
nodeAuxBytes := siblingBytes[len(p.Siblings)*ElemBytesLen:]
if len(nodeAuxBytes) != 2*ElemBytesLen {
return nil, ErrInvalidProofBytes
}
copy(p.NodeAux.Key[:], nodeAuxBytes[:ElemBytesLen])
copy(p.NodeAux.Value[:], nodeAuxBytes[ElemBytesLen:2*ElemBytesLen])
}
return p, nil
}
// Bytes serializes a Proof into a byte array.
func (p *Proof) Bytes() []byte {
bsLen := proofFlagsLen + len(p.notempties) + ElemBytesLen*len(p.Siblings)
if p.NodeAux != nil {
bsLen += 2 * ElemBytesLen
}
bs := make([]byte, bsLen)
if !p.Existence {
bs[0] |= 0x01
}
bs[1] = byte(p.depth)
copy(bs[proofFlagsLen:len(p.notempties)+proofFlagsLen], p.notempties[:])
siblingsBytes := bs[len(p.notempties)+proofFlagsLen:]
for i, k := range p.Siblings {
copy(siblingsBytes[i*ElemBytesLen:(i+1)*ElemBytesLen], k[:])
}
if p.NodeAux != nil {
bs[0] |= 0x02
copy(bs[len(bs)-2*ElemBytesLen:], p.NodeAux.Key[:])
copy(bs[len(bs)-1*ElemBytesLen:], p.NodeAux.Value[:])
}
return bs
}
// GenerateProof generates the proof of existence (or non-existence) of an
// Entry's hash Index for a Merkle Tree given the root.
// If the rootKey is nil, the current merkletree root is used
func (mt *MerkleTree) GenerateProof(k *big.Int, rootKey *Hash) (*Proof, error) {
p := &Proof{}
var siblingKey *Hash
kHash := NewHashFromBigInt(k)
path := getPath(mt.maxLevels, kHash[:])
if rootKey == nil {
rootKey = mt.Root()
}
nextKey := rootKey
for p.depth = 0; p.depth < uint(mt.maxLevels); p.depth++ {
n, err := mt.GetNode(nextKey)
if err != nil {
return nil, err
}
switch n.Type {
case NodeTypeEmpty:
return p, nil
case NodeTypeLeaf:
if bytes.Equal(kHash[:], n.Entry[0][:]) {
p.Existence = true
return p, nil
} else {
// We found a leaf whose entry didn't match hIndex
p.NodeAux = &NodeAux{Key: n.Entry[0], Value: n.Entry[1]}
return p, nil
}
case NodeTypeMiddle:
if path[p.depth] {
nextKey = n.ChildR
siblingKey = n.ChildL
} else {
nextKey = n.ChildL
siblingKey = n.ChildR
}
default:
return nil, ErrInvalidNodeFound
}
if !bytes.Equal(siblingKey[:], HashZero[:]) {
common.SetBitBigEndian(p.notempties[:], uint(p.depth))
p.Siblings = append(p.Siblings, siblingKey)
}
}
return nil, ErrEntryIndexNotFound
}
// VerifyProof verifies the Merkle Proof for the entry and root.
func VerifyProof(rootKey *Hash, proof *Proof, k, v *big.Int) bool {
rootFromProof, err := RootFromProof(proof, k, v)
if err != nil {
return false
}
return bytes.Equal(rootKey[:], rootFromProof[:])
}
// RootFromProof calculates the root that would correspond to a tree whose
// siblings are the ones in the proof with the claim hashing to hIndex and
// hValue.
func RootFromProof(proof *Proof, k, v *big.Int) (*Hash, error) {
kHash := NewHashFromBigInt(k)
vHash := NewHashFromBigInt(v)
sibIdx := len(proof.Siblings) - 1
var err error
var midKey *Hash
if proof.Existence {
midKey, err = LeafKey(kHash, vHash)
if err != nil {
return nil, err
}
} else {
if proof.NodeAux == nil {
midKey = &HashZero
} else {
if bytes.Equal(kHash[:], proof.NodeAux.Key[:]) {
return nil, fmt.Errorf("Non-existence proof being checked against hIndex equal to nodeAux")
}
midKey, err = LeafKey(proof.NodeAux.Key, proof.NodeAux.Value)
if err != nil {
return nil, err
}
}
}
path := getPath(int(proof.depth), kHash[:])
var siblingKey *Hash
for lvl := int(proof.depth) - 1; lvl >= 0; lvl-- {
if common.TestBitBigEndian(proof.notempties[:], uint(lvl)) {
siblingKey = proof.Siblings[sibIdx]
sibIdx--
} else {
siblingKey = &HashZero
}
if path[lvl] {
midKey, err = NewNodeMiddle(siblingKey, midKey).Key()
if err != nil {
return nil, err
}
} else {
midKey, err = NewNodeMiddle(midKey, siblingKey).Key()
if err != nil {
return nil, err
}
}
}
return midKey, nil
}
// walk is a helper recursive function to iterate over all tree branches
func (mt *MerkleTree) walk(key *Hash, f func(*Node)) error {
n, err := mt.GetNode(key)
if err != nil {
return err
}
switch n.Type {
case NodeTypeEmpty:
f(n)
case NodeTypeLeaf:
f(n)
case NodeTypeMiddle:
f(n)
if err := mt.walk(n.ChildL, f); err != nil {
return err
}
if err := mt.walk(n.ChildR, f); err != nil {
return err
}
default:
return ErrInvalidNodeFound
}
return nil
}
// Walk iterates over all the branches of a MerkleTree with the given rootKey
// if rootKey is nil, it will get the current RootKey of the current state of the MerkleTree.
// For each node, it calls the f function given in the parameters.
// See some examples of the Walk function usage in the merkletree_test.go
// test functions: TestMTWalk, TestMTWalkGraphViz, TestMTWalkDumpClaims
func (mt *MerkleTree) Walk(rootKey *Hash, f func(*Node)) error {
if rootKey == nil {
rootKey = mt.Root()
}
err := mt.walk(rootKey, f)
return err
}
// GraphViz uses Walk function to generate a string GraphViz representation of the
// tree and writes it to w
func (mt *MerkleTree) GraphViz(w io.Writer, rootKey *Hash) error {
fmt.Fprintf(w, `digraph hierarchy {
node [fontname=Monospace,fontsize=10,shape=box]
`)
cnt := 0
var errIn error
err := mt.Walk(rootKey, func(n *Node) {
k, err := n.Key()
if err != nil {
errIn = err
}
switch n.Type {
case NodeTypeEmpty:
case NodeTypeLeaf:
fmt.Fprintf(w, "\"%v\" [style=filled];\n", k.BigInt().String())
case NodeTypeMiddle:
lr := [2]string{n.ChildL.BigInt().String(), n.ChildR.BigInt().String()}
for i := range lr {
if lr[i] == "0" {
lr[i] = fmt.Sprintf("empty%v", cnt)
fmt.Fprintf(w, "\"%v\" [style=dashed,label=0];\n", lr[i])
cnt++
}
}
fmt.Fprintf(w, "\"%v\" -> {\"%v\" \"%v\"}\n", k.BigInt().String(), lr[0], lr[1])
default:
}
})
fmt.Fprintf(w, "}\n")
if errIn != nil {
return errIn
}
return err
}
// PrintGraphViz prints directly the GraphViz() output
func (mt *MerkleTree) PrintGraphViz(rootKey *Hash) error {
if rootKey == nil {
rootKey = mt.Root()
}
w := bytes.NewBufferString("")
fmt.Fprintf(w, "--------\nGraphViz of the MerkleTree with RootKey "+rootKey.BigInt().String()+"\n")
err := mt.GraphViz(w, nil)
if err != nil {
return err
}
fmt.Fprintf(w, "End of GraphViz of the MerkleTree with RootKey "+rootKey.BigInt().String()+"\n--------\n")
fmt.Println(w)
return nil
}