|
|
## R1CS to Quadratic Arithmetic Program
[![GoDoc](https://godoc.org/github.com/arnaucube/go-snark/r1csqap?status.svg)](https://godoc.org/github.com/arnaucube/go-snark/r1csqap) R1CS to QAP - `Succinct Non-Interactive Zero Knowledge for a von Neumann Architecture`, Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, Madars Virza https://eprint.iacr.org/2013/879.pdf - Vitalik Buterin blog post about QAP https://medium.com/@VitalikButerin/quadratic-arithmetic-programs-from-zero-to-hero-f6d558cea649 - Ariel Gabizon in Zcash blog https://z.cash/blog/snark-explain5 - Lagrange polynomial Wikipedia article https://en.wikipedia.org/wiki/Lagrange_polynomial
#### Usage
- R1CS to QAP ```go pf := NewPolynomialField(f)
b0 := big.NewInt(int64(0)) b1 := big.NewInt(int64(1)) b3 := big.NewInt(int64(3)) b5 := big.NewInt(int64(5)) b9 := big.NewInt(int64(9)) b27 := big.NewInt(int64(27)) b30 := big.NewInt(int64(30)) b35 := big.NewInt(int64(35)) a := [][]*big.Int{ []*big.Int{b0, b1, b0, b0, b0, b0}, []*big.Int{b0, b0, b0, b1, b0, b0}, []*big.Int{b0, b1, b0, b0, b1, b0}, []*big.Int{b5, b0, b0, b0, b0, b1}, } b := [][]*big.Int{ []*big.Int{b0, b1, b0, b0, b0, b0}, []*big.Int{b0, b1, b0, b0, b0, b0}, []*big.Int{b1, b0, b0, b0, b0, b0}, []*big.Int{b1, b0, b0, b0, b0, b0}, } c := [][]*big.Int{ []*big.Int{b0, b0, b0, b1, b0, b0}, []*big.Int{b0, b0, b0, b0, b1, b0}, []*big.Int{b0, b0, b0, b0, b0, b1}, []*big.Int{b0, b0, b1, b0, b0, b0}, } alphas, betas, gammas, zx := pf.R1CSToQAP(a, b, c) fmt.Println(alphas) fmt.Println(betas) fmt.Println(gammas) fmt.Println(z)
w := []*big.Int{b1, b3, b35, b9, b27, b30} ax, bx, cx, px := pf.CombinePolynomials(w, alphas, betas, gammas) fmt.Println(ax) fmt.Println(bx) fmt.Println(cx) fmt.Println(px)
hx := pf.DivisorPolinomial(px, zx) fmt.Println(hx) ```
|