|
|
package circuitcompiler
import ( "fmt" "github.com/mottla/go-snark/bn128" "github.com/mottla/go-snark/fields" "github.com/mottla/go-snark/r1csqap" "math/big" "sync" )
type utils struct { Bn bn128.Bn128 FqR fields.Fq PF r1csqap.PolynomialField }
type Program struct { functions map[string]*Circuit globalInputs []Constraint arithmeticEnvironment utils //find a better name
R1CS struct { A [][]*big.Int B [][]*big.Int C [][]*big.Int } }
func (p *Program) PrintContraintTrees() { for k, v := range p.functions { fmt.Println(k) PrintTree(v.root) } }
func (p *Program) BuildConstraintTrees() {
mainRoot := p.getMainCircuit().root
if mainRoot.value.Op&(MINUS|PLUS) != 0 { newOut := Constraint{Out: "out", V1: "1", V2: "out2", Op: MULTIPLY} p.getMainCircuit().addConstraint(&newOut) mainRoot.value.Out = "main@out2" p.getMainCircuit().gateMap[mainRoot.value.Out] = mainRoot }
var wg = sync.WaitGroup{}
for _, circuit := range p.functions { wg.Add(1) func() { circuit.buildTree(circuit.root) wg.Done() }()
} wg.Wait() return
}
func (c *Circuit) buildTree(g *gate) { if _, ex := c.gateMap[g.value.Out]; ex { if g.OperationType()&(IN|CONST) != 0 { return } } else { panic(fmt.Sprintf("undefined variable %s", g.value.Out)) } if g.OperationType() == FUNC { //g.funcInputs = []*gate{}
for _, in := range g.value.Inputs { if gate, ex := c.gateMap[in]; ex { g.funcInputs = append(g.funcInputs, gate) //note that we do repeated work here. the argument
c.buildTree(gate) } else { panic(fmt.Sprintf("undefined argument %s", g.value.V1)) } } return } if constr, ex := c.gateMap[g.value.V1]; ex { g.left = constr c.buildTree(g.left) } else { panic(fmt.Sprintf("undefined value %s", g.value.V1)) }
if constr, ex := c.gateMap[g.value.V2]; ex { g.right = constr c.buildTree(g.right) } else { panic(fmt.Sprintf("undefined value %s", g.value.V2)) } }
func (p *Program) ReduceCombinedTree() (orderedmGates []gate) { mGatesUsed := make(map[string]bool) orderedmGates = []gate{} p.r1CSRecursiveBuild(p.getMainCircuit(), p.getMainCircuit().root, mGatesUsed, &orderedmGates, false, false) return orderedmGates }
func (p *Program) r1CSRecursiveBuild(currentCircuit *Circuit, root *gate, mGatesUsed map[string]bool, orderedmGates *[]gate, negate bool, inverse bool) (isConstant bool) {
if root.OperationType() == IN { return false }
if root.OperationType() == CONST { return true }
if _, alreadyComputed := mGatesUsed[root.value.Out]; alreadyComputed { return false }
if root.OperationType() == FUNC { nextContext := p.extendedFunctionRenamer(currentCircuit, root.value) isConstant = p.r1CSRecursiveBuild(nextContext, nextContext.root, mGatesUsed, orderedmGates, negate, inverse) return isConstant }
if _, alreadyComputed := mGatesUsed[root.value.V1]; !alreadyComputed { isConstant = p.r1CSRecursiveBuild(currentCircuit, root.left, mGatesUsed, orderedmGates, negate, inverse) }
if _, alreadyComputed := mGatesUsed[root.value.V2]; !alreadyComputed { cons := p.r1CSRecursiveBuild(currentCircuit, root.right, mGatesUsed, orderedmGates, Xor(negate, root.value.negate), Xor(inverse, root.value.invert)) isConstant = isConstant || cons }
if root.OperationType() == MULTIPLY {
if isConstant && !root.value.invert && root != p.getMainCircuit().root { return false } root.leftIns = p.collectFactors(currentCircuit, root.left, mGatesUsed, false, false) //if root.left.value.Out== root.right.value.Out{
// //note this is not a full copy, but shouldnt be a problem
// root.rightIns= root.leftIns
//}else{
// collectAtomsInSubtree(root.right, mGatesUsed, 1, root.rightIns, functionRootMap, Xor(negate, root.value.negate), Xor(inverse, root.value.invert))
//}
//root.rightIns = collectAtomsInSubtree3(root.right, mGatesUsed, Xor(negate, root.value.negate), Xor(inverse, root.value.invert))
root.rightIns = p.collectFactors(currentCircuit, root.right, mGatesUsed, false, false) root.index = len(mGatesUsed) var nn = root.value.Out //if _, ex := p.functions[nn]; ex {
// nn = composeNewFunction(root.value.Out, currentCircuit.Inputs)
//}
mGatesUsed[nn] = true rootGate := cloneGate(root) rootGate.value.Out = nn *orderedmGates = append(*orderedmGates, *rootGate)
}
return isConstant //TODO optimize if output is not a multipication gate
}
type factor struct { typ Token name string invert, negate bool multiplicative [2]int }
func (f factor) String() string { if f.typ == CONST { return fmt.Sprintf("(const fac: %v)", f.multiplicative) } str := f.name if f.invert { str += "^-1" } if f.negate { str = "-" + str } return fmt.Sprintf("(\"%s\" fac: %v)", str, f.multiplicative) }
func mul2DVector(a, b [2]int) [2]int { return [2]int{a[0] * b[0], a[1] * b[1]} }
func mulFactors(leftFactors, rightFactors []factor) (result []factor) {
for _, facLeft := range leftFactors {
for i, facRight := range rightFactors { if facLeft.typ == CONST && facRight.typ == IN { rightFactors[i] = factor{typ: IN, name: facRight.name, negate: Xor(facLeft.negate, facRight.negate), invert: facRight.invert, multiplicative: mul2DVector(facRight.multiplicative, facLeft.multiplicative)} continue } if facRight.typ == CONST && facLeft.typ == IN { rightFactors[i] = factor{typ: IN, name: facLeft.name, negate: Xor(facLeft.negate, facRight.negate), invert: facLeft.invert, multiplicative: mul2DVector(facRight.multiplicative, facLeft.multiplicative)} continue }
if facRight.typ&facLeft.typ == CONST { rightFactors[i] = factor{typ: CONST, negate: Xor(facRight.negate, facLeft.negate), multiplicative: mul2DVector(facRight.multiplicative, facLeft.multiplicative)} continue
} //tricky part here
//this one should only be reached, after a true mgate had its left and right braches computed. here we
//a factor can appear at most in quadratic form. we reduce terms a*a^-1 here.
if facRight.typ&facLeft.typ == IN { //if facRight.n
//rightFactors[i] = factor{typ: CONST, negate: Xor(facRight.negate, facLeft.negate), multiplicative: mul2DVector(facRight.multiplicative, facLeft.multiplicative)}
//continue
} panic("unexpected")
}
}
return rightFactors }
//returns the absolute value of a signed int and a flag telling if the input was positive or not
//this implementation is awesome and fast (see Henry S Warren, Hackers's Delight)
func abs(n int) (val int, positive bool) { y := n >> 63 return (n ^ y) - y, y == 0 }
//returns the reduced sum of two input factor arrays
//if no reduction was done (worst case), it returns the concatenation of the input arrays
func addFactors(leftFactors, rightFactors []factor) []factor { var found bool res := make([]factor, 0, len(leftFactors)+len(rightFactors)) for _, facLeft := range leftFactors {
found = false for i, facRight := range rightFactors {
if facLeft.typ&facRight.typ == CONST { var a0, b0 = facLeft.multiplicative[0], facRight.multiplicative[0] if facLeft.negate { a0 *= -1 } if facRight.negate { b0 *= -1 } absValue, positive := abs(a0*facRight.multiplicative[1] + facLeft.multiplicative[1]*b0)
rightFactors[i] = factor{typ: CONST, negate: !positive, multiplicative: [2]int{absValue, facLeft.multiplicative[1] * facRight.multiplicative[1]}}
found = true //res = append(res, factor{typ: CONST, negate: negate, multiplicative: [2]int{absValue, facLeft.multiplicative[1] * facRight.multiplicative[1]}})
break } if facLeft.typ&facRight.typ == IN && facLeft.invert == facRight.invert && facLeft.name == facRight.name { var a0, b0 = facLeft.multiplicative[0], facRight.multiplicative[0] if facLeft.negate { a0 *= -1 } if facRight.negate { b0 *= -1 } absValue, positive := abs(a0*facRight.multiplicative[1] + facLeft.multiplicative[1]*b0)
rightFactors[i] = factor{typ: IN, invert: facRight.invert, name: facRight.name, negate: !positive, multiplicative: [2]int{absValue, facLeft.multiplicative[1] * facRight.multiplicative[1]}}
found = true //res = append(res, factor{typ: CONST, negate: negate, multiplicative: [2]int{absValue, facLeft.multiplicative[1] * facRight.multiplicative[1]}})
break } } if !found { res = append(res, facLeft) } }
for _, val := range rightFactors { if val.multiplicative[0] != 0 { res = append(res, val) } }
return res }
func (p *Program) collectFactors(contextCircut *Circuit, g *gate, mGatesUsed map[string]bool, negate bool, invert bool) []factor {
if _, ex := mGatesUsed[g.value.Out]; ex { return []factor{{typ: IN, name: g.value.Out, invert: invert, negate: negate, multiplicative: [2]int{1, 1}}} }
if g.OperationType() == IN { return []factor{{typ: IN, name: g.value.Out, invert: invert, negate: negate, multiplicative: [2]int{1, 1}}} } if g.OperationType() == FUNC { nextContext := p.extendedFunctionRenamer(contextCircut, g.value) return p.collectFactors(nextContext, nextContext.root, mGatesUsed, negate, invert) }
if g.OperationType() == CONST { b1, v1 := isValue(g.value.Out) if !b1 { panic("not a constant") } if invert { return []factor{{typ: CONST, negate: negate, multiplicative: [2]int{1, v1}}} } return []factor{{typ: CONST, negate: negate, multiplicative: [2]int{v1, 1}}} }
var leftFactors, rightFactors []factor if g.left.OperationType() == FUNC { nextContext := p.extendedFunctionRenamer(contextCircut, g.left.value) leftFactors = p.collectFactors(nextContext, nextContext.root, mGatesUsed, negate, invert) } else { leftFactors = p.collectFactors(contextCircut, g.left, mGatesUsed, negate, invert) }
if g.right.OperationType() == FUNC { nextContext := p.extendedFunctionRenamer(contextCircut, g.right.value) rightFactors = p.collectFactors(nextContext, nextContext.root, mGatesUsed, Xor(negate, g.value.negate), Xor(invert, g.value.invert)) } else { rightFactors = p.collectFactors(contextCircut, g.right, mGatesUsed, Xor(negate, g.value.negate), Xor(invert, g.value.invert)) }
switch g.OperationType() { case MULTIPLY: return mulFactors(leftFactors, rightFactors) case PLUS: return addFactors(leftFactors, rightFactors) default: panic("unexpected gate") }
}
//copies a gate neglecting its references to other gates
func cloneGate(in *gate) (out *gate) { constr := &Constraint{Inputs: in.value.Inputs, Out: in.value.Out, Op: in.value.Op, invert: in.value.invert, negate: in.value.negate, V2: in.value.V2, V1: in.value.V1} nRightins := make([]factor, len(in.rightIns)) nLeftInst := make([]factor, len(in.leftIns)) for k, v := range in.rightIns { nRightins[k] = v } for k, v := range in.leftIns { nLeftInst[k] = v } return &gate{value: constr, leftIns: nLeftInst, rightIns: nRightins, index: in.index} }
func (p *Program) getMainCircuit() *Circuit { return p.functions["main"] }
func (p *Program) addGlobalInput(c Constraint) { c.Out = "main@" + c.Out p.globalInputs = append(p.globalInputs, c) }
func prepareUtils() utils { bn, err := bn128.NewBn128() if err != nil { panic(err) } // new Finite Field
fqR := fields.NewFq(bn.R) // new Polynomial Field
pf := r1csqap.NewPolynomialField(fqR)
return utils{ Bn: bn, FqR: fqR, PF: pf, } }
func (p *Program) extendedFunctionRenamer(contextCircuit *Circuit, constraint *Constraint) (nextContext *Circuit) {
if constraint.Op != FUNC { panic("not a function") } //if _, ex := contextCircuit.gateMap[constraint.Out]; !ex {
// panic("constraint must be within the contextCircuit circuit")
//}
if b, n, _ := isFunction(constraint.Out); b { if newContext, v := p.functions[n]; v { //am i certain that constraint.inputs is alwazs equal to n??? me dont like it
for i, argument := range constraint.Inputs { isConst, _ := isValue(argument) if isConst { continue } isFunc, _, _ := isFunction(argument) if isFunc { panic("functions as arguments no supported yet") //p.extendedFunctionRenamer(contextCircuit,)
} //at this point I assert that argument is a variable. This can become troublesome later
inputOriginCircuit := p.functions[getContextFromVariable(argument)] if gate, ex := inputOriginCircuit.gateMap[argument]; ex { oldGate := newContext.gateMap[newContext.Inputs[i]] //we take the old gate which was nothing but a input
//and link this input to its constituents comming from the calling contextCircuit.
//i think this is pretty neat
oldGate.value = gate.value oldGate.right = gate.right oldGate.left = gate.left
} else { panic("not expected") } } newContext.renameInputs(constraint.Inputs) return newContext } } else { panic("not expected") }
return nil }
func NewProgram() (p *Program) { p = &Program{functions: map[string]*Circuit{}, globalInputs: []Constraint{{Op: IN, Out: "one"}}, arithmeticEnvironment: prepareUtils()} return }
// GenerateR1CS generates the R1CS polynomials from the Circuit
func (p *Program) GenerateReducedR1CS(mGates []gate) (a, b, c [][]*big.Int) { // from flat code to R1CS
offset := len(p.globalInputs) // one + in1 +in2+... + gate1 + gate2 .. + out
size := offset + len(mGates) indexMap := make(map[string]int)
for i, v := range p.globalInputs { indexMap[v.Out] = i
} for i, v := range mGates { indexMap[v.value.Out] = i + offset }
for _, gate := range mGates {
if gate.OperationType() == MULTIPLY { aConstraint := r1csqap.ArrayOfBigZeros(size) bConstraint := r1csqap.ArrayOfBigZeros(size) cConstraint := r1csqap.ArrayOfBigZeros(size)
for _, val := range gate.leftIns { convertAndInsertFactorAt(aConstraint, val, indexMap[val.name]) }
for _, val := range gate.rightIns { convertAndInsertFactorAt(bConstraint, val, indexMap[val.name]) }
cConstraint[indexMap[gate.value.Out]] = big.NewInt(int64(1))
if gate.value.invert { tmp := aConstraint aConstraint = cConstraint cConstraint = tmp } a = append(a, aConstraint) b = append(b, bConstraint) c = append(c, cConstraint)
} else { panic("not a m gate") } } p.R1CS.A = a p.R1CS.B = b p.R1CS.C = c return a, b, c }
var Utils = prepareUtils()
func fractionToField(in [2]int) *big.Int { return Utils.FqR.Mul(big.NewInt(int64(in[0])), Utils.FqR.Inverse(big.NewInt(int64(in[1]))))
}
func convertAndInsertFactorAt(arr []*big.Int, val factor, index int) { value := new(big.Int).Add(new(big.Int), fractionToField(val.multiplicative))
if val.negate { value.Neg(value) }
if val.typ == CONST { arr[0] = value } else { arr[index] = value }
}
func (p *Program) CalculateWitness(input []*big.Int) (witness []*big.Int) {
if len(p.globalInputs)-1 != len(input) { panic("input do not match the required inputs") }
witness = r1csqap.ArrayOfBigZeros(len(p.R1CS.A[0])) set := make([]bool, len(witness)) witness[0] = big.NewInt(int64(1)) set[0] = true
for i := range input { witness[i+1] = input[i] set[i+1] = true }
zero := big.NewInt(int64(0))
for i := 0; i < len(p.R1CS.A); i++ { gatesLeftInputs := p.R1CS.A[i] gatesRightInputs := p.R1CS.B[i] gatesOutputs := p.R1CS.C[i]
sumLeft := big.NewInt(int64(0)) sumRight := big.NewInt(int64(0)) sumOut := big.NewInt(int64(0))
index := -1 division := false for j, val := range gatesLeftInputs { if val.Cmp(zero) != 0 { if !set[j] { index = j division = true break } sumLeft.Add(sumLeft, new(big.Int).Mul(val, witness[j])) } } for j, val := range gatesRightInputs { if val.Cmp(zero) != 0 { sumRight.Add(sumRight, new(big.Int).Mul(val, witness[j])) } }
for j, val := range gatesOutputs { if val.Cmp(zero) != 0 { if !set[j] { if index != -1 { panic("invalid R1CS form") }
index = j break } sumOut.Add(sumOut, new(big.Int).Mul(val, witness[j])) } }
if !division { set[index] = true witness[index] = new(big.Int).Mul(sumLeft, sumRight)
} else { b := sumRight.Int64() c := sumOut.Int64() set[index] = true witness[index] = big.NewInt(c / b) }
}
return }
|