|
|
package circuitcompiler
import ( "errors" "io" "regexp" "strings" )
// Parser data structure holds the Scanner and the Parsing functions
type Parser struct { s *Scanner buf struct { tok Token // last read token
lit string // last read literal
n int // buffer size (max=1)
} }
// NewParser creates a new parser from a io.Reader
func NewParser(r io.Reader) *Parser { return &Parser{s: NewScanner(r)} }
func (p *Parser) scan() (tok Token, lit string) { // if there is a token in the buffer return it
if p.buf.n != 0 { p.buf.n = 0 return p.buf.tok, p.buf.lit } tok, lit = p.s.scan()
p.buf.tok, p.buf.lit = tok, lit
return }
func (p *Parser) unscan() { p.buf.n = 1 }
func (p *Parser) scanIgnoreWhitespace() (tok Token, lit string) { tok, lit = p.scan() if tok == WS { tok, lit = p.scan() } return }
// parseLine parses the current line
func (p *Parser) parseLine() (*Constraint, error) { /* in this version, line will be for example s3 = s1 * s4 this is: val eq val op val */ c := &Constraint{} tok, lit := p.scanIgnoreWhitespace() c.Out = lit c.Literal += lit
if c.Literal == "func" { // format: `func name(in):`
line, err := p.s.r.ReadString(':') if err != nil { return c, err } // read string inside ( )
rgx := regexp.MustCompile(`\((.*?)\)`) insideParenthesis := rgx.FindStringSubmatch(line) varsString := strings.Replace(insideParenthesis[1], " ", "", -1) c.Inputs = strings.Split(varsString, ",") return c, nil }
_, lit = p.scanIgnoreWhitespace() // skip =
c.Literal += lit
// v1
_, lit = p.scanIgnoreWhitespace() c.V1 = lit c.Literal += lit // operator
_, lit = p.scanIgnoreWhitespace() c.Op = lit c.Literal += lit // v2
_, lit = p.scanIgnoreWhitespace() c.V2 = lit c.Literal += lit if tok == EOF { return nil, errors.New("eof in parseline") } return c, nil }
func existInArray(arr []string, elem string) bool { for _, v := range arr { if v == elem { return true } } return false }
func addToArrayIfNotExist(arr []string, elem string) []string { for _, v := range arr { if v == elem { return arr } } arr = append(arr, elem) return arr }
// Parse parses the lines and returns the compiled Circuit
func (p *Parser) Parse() (*Circuit, error) { circuit := &Circuit{} circuit.Signals = append(circuit.Signals, "one") nInputs := 0 for { constraint, err := p.parseLine() if err != nil { break } if constraint.Literal == "func" { // one constraint for each input
for _, in := range constraint.Inputs { newConstr := &Constraint{ Op: "in", Out: in, } circuit.Constraints = append(circuit.Constraints, *newConstr) nInputs++ } circuit.Inputs = constraint.Inputs continue } circuit.Constraints = append(circuit.Constraints, *constraint) isVal, _ := isValue(constraint.V1) if !isVal { circuit.Signals = addToArrayIfNotExist(circuit.Signals, constraint.V1) } isVal, _ = isValue(constraint.V2) if !isVal { circuit.Signals = addToArrayIfNotExist(circuit.Signals, constraint.V2) } if constraint.Out == "out" { // if Out is "out", put it after first value (one) and before the inputs
if !existInArray(circuit.Signals, constraint.Out) { signalsCopy := copyArray(circuit.Signals) var auxSignals []string auxSignals = append(auxSignals, signalsCopy[0]) auxSignals = append(auxSignals, constraint.Out) auxSignals = append(auxSignals, signalsCopy[1:]...) circuit.Signals = auxSignals circuit.PublicSignals = append(circuit.PublicSignals, constraint.Out) circuit.NPublic++ } } else { circuit.Signals = addToArrayIfNotExist(circuit.Signals, constraint.Out) } } circuit.NVars = len(circuit.Signals) circuit.NSignals = len(circuit.Signals) return circuit, nil } func copyArray(in []string) []string { // tmp
var out []string for _, e := range in { out = append(out, e) } return out }
|