mirror of
https://github.com/arnaucube/go-snark-study.git
synced 2026-02-02 17:26:41 +01:00
e(Vb, piB) == e(piB', g2) proof
This commit is contained in:
161
README.md
161
README.md
@@ -1,112 +1,71 @@
|
||||
# go-snark [](https://goreportcard.com/report/github.com/arnaucube/go-snark)
|
||||
|
||||
zk-SNARK library implementation in Go
|
||||
zkSNARK library implementation in Go
|
||||
|
||||
|
||||
#### Test
|
||||
### Usage
|
||||
- [](https://godoc.org/github.com/arnaucube/go-snark/zk) zk (TrustedSetup, GenerateProof, VerifyProof)
|
||||
- [](https://godoc.org/github.com/arnaucube/go-snark/bn128) bn128 (more details: https://github.com/arnaucube/go-snark/tree/master/bn128)
|
||||
- [](https://godoc.org/github.com/arnaucube/go-snark/fields) Finite Fields
|
||||
- [](https://godoc.org/github.com/arnaucube/go-snark/r1csqap) R1CS to QAP (more details: https://github.com/arnaucube/go-snark/tree/master/r1csqap)
|
||||
|
||||
Example:
|
||||
```go
|
||||
bn, err := bn128.NewBn128()
|
||||
assert.Nil(t, err)
|
||||
|
||||
// new Finite Field
|
||||
f := fields.NewFq(bn.R)
|
||||
|
||||
// new Polynomial Field
|
||||
pf := r1csqap.NewPolynomialField(f)
|
||||
|
||||
/*
|
||||
suppose that we have the following variables with *big.Int elements:
|
||||
a = [[0 1 0 0 0 0] [0 0 0 1 0 0] [0 1 0 0 1 0] [5 0 0 0 0 1]]
|
||||
b = [[0 1 0 0 0 0] [0 1 0 0 0 0] [1 0 0 0 0 0] [1 0 0 0 0 0]]
|
||||
c = [[0 0 0 1 0 0] [0 0 0 0 1 0] [0 0 0 0 0 1] [0 0 1 0 0 0]]
|
||||
|
||||
w = [1, 3, 35, 9, 27, 30]
|
||||
*/
|
||||
|
||||
alphas, betas, gammas, zx := pf.R1CSToQAP(a, b, c)
|
||||
|
||||
ax, bx, cx, px := pf.CombinePolynomials(w, alphas, betas, gammas)
|
||||
|
||||
hx := pf.DivisorPolinomial(px, zx)
|
||||
|
||||
// hx==px/zx so px==hx*zx
|
||||
assert.Equal(t, px, pf.Mul(hx, zx))
|
||||
|
||||
// p(x) = a(x) * b(x) - c(x) == h(x) * z(x)
|
||||
abc := pf.Sub(pf.Mul(ax, bx), cx)
|
||||
assert.Equal(t, abc, px)
|
||||
hz := pf.Mul(hx, zx)
|
||||
assert.Equal(t, abc, hz)
|
||||
|
||||
// calculate trusted setup
|
||||
setup, err := GenerateTrustedSetup(bn, len(ax))
|
||||
assert.Nil(t, err)
|
||||
fmt.Println("trusted setup:")
|
||||
fmt.Println(setup.G1T)
|
||||
fmt.Println(setup.G2T)
|
||||
|
||||
// piA = g1 * A(t), piB = g2 * B(t), piC = g1 * C(t), piH = g1 * H(t)
|
||||
proof, err := GenerateProofs(bn, f, setup, ax, bx, cx, hx, zx)
|
||||
assert.Nil(t, err)
|
||||
|
||||
|
||||
// verify the proofs with the bn128 pairing
|
||||
verified := VerifyProof(bn, publicSetup, proof)
|
||||
assert.True(t, verified)
|
||||
```
|
||||
|
||||
### Test
|
||||
```
|
||||
go test ./... -v
|
||||
```
|
||||
|
||||
|
||||
## R1CS to Quadratic Arithmetic Program
|
||||
- `Succinct Non-Interactive Zero Knowledge for a von Neumann Architecture`, Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, Madars Virza https://eprint.iacr.org/2013/879.pdf
|
||||
- Vitalik Buterin blog post about QAP https://medium.com/@VitalikButerin/quadratic-arithmetic-programs-from-zero-to-hero-f6d558cea649
|
||||
- Ariel Gabizon in Zcash blog https://z.cash/blog/snark-explain5
|
||||
- Lagrange polynomial Wikipedia article https://en.wikipedia.org/wiki/Lagrange_polynomial
|
||||
|
||||
#### Usage
|
||||
- R1CS to QAP
|
||||
```go
|
||||
pf := NewPolynomialField(f)
|
||||
|
||||
b0 := big.NewInt(int64(0))
|
||||
b1 := big.NewInt(int64(1))
|
||||
b3 := big.NewInt(int64(3))
|
||||
b5 := big.NewInt(int64(5))
|
||||
b9 := big.NewInt(int64(9))
|
||||
b27 := big.NewInt(int64(27))
|
||||
b30 := big.NewInt(int64(30))
|
||||
b35 := big.NewInt(int64(35))
|
||||
a := [][]*big.Int{
|
||||
[]*big.Int{b0, b1, b0, b0, b0, b0},
|
||||
[]*big.Int{b0, b0, b0, b1, b0, b0},
|
||||
[]*big.Int{b0, b1, b0, b0, b1, b0},
|
||||
[]*big.Int{b5, b0, b0, b0, b0, b1},
|
||||
}
|
||||
b := [][]*big.Int{
|
||||
[]*big.Int{b0, b1, b0, b0, b0, b0},
|
||||
[]*big.Int{b0, b1, b0, b0, b0, b0},
|
||||
[]*big.Int{b1, b0, b0, b0, b0, b0},
|
||||
[]*big.Int{b1, b0, b0, b0, b0, b0},
|
||||
}
|
||||
c := [][]*big.Int{
|
||||
[]*big.Int{b0, b0, b0, b1, b0, b0},
|
||||
[]*big.Int{b0, b0, b0, b0, b1, b0},
|
||||
[]*big.Int{b0, b0, b0, b0, b0, b1},
|
||||
[]*big.Int{b0, b0, b1, b0, b0, b0},
|
||||
}
|
||||
alphas, betas, gammas, zx := pf.R1CSToQAP(a, b, c)
|
||||
fmt.Println(alphas)
|
||||
fmt.Println(betas)
|
||||
fmt.Println(gammas)
|
||||
fmt.Println(z)
|
||||
|
||||
w := []*big.Int{b1, b3, b35, b9, b27, b30}
|
||||
ax, bx, cx, px := pf.CombinePolynomials(w, alphas, betas, gammas)
|
||||
fmt.Println(ax)
|
||||
fmt.Println(bx)
|
||||
fmt.Println(cx)
|
||||
fmt.Println(px)
|
||||
|
||||
hx := pf.DivisorPolinomial(px, zx)
|
||||
fmt.Println(hx)
|
||||
```
|
||||
|
||||
## Bn128
|
||||
Implementation of the bn128 pairing in Go.
|
||||
|
||||
|
||||
Implementation followng the information and the implementations from:
|
||||
- `Multiplication and Squaring on Pairing-Friendly
|
||||
Fields`, Augusto Jun Devegili, Colm Ó hÉigeartaigh, Michael Scott, and Ricardo Dahab https://pdfs.semanticscholar.org/3e01/de88d7428076b2547b60072088507d881bf1.pdf
|
||||
- `Optimal Pairings`, Frederik Vercauteren https://www.cosic.esat.kuleuven.be/bcrypt/optimal.pdf , https://eprint.iacr.org/2008/096.pdf
|
||||
- `Double-and-Add with Relative Jacobian
|
||||
Coordinates`, Björn Fay https://eprint.iacr.org/2014/1014.pdf
|
||||
- `Fast and Regular Algorithms for Scalar Multiplication
|
||||
over Elliptic Curves`, Matthieu Rivain https://eprint.iacr.org/2011/338.pdf
|
||||
- `High-Speed Software Implementation of the Optimal Ate Pairing over Barreto–Naehrig Curves`, Jean-Luc Beuchat, Jorge E. González-Díaz, Shigeo Mitsunari, Eiji Okamoto, Francisco Rodríguez-Henríquez, and Tadanori Teruya https://eprint.iacr.org/2010/354.pdf
|
||||
- `New software speed records for cryptographic pairings`, Michael Naehrig, Ruben Niederhagen, Peter Schwabe https://cryptojedi.org/papers/dclxvi-20100714.pdf
|
||||
- `Implementing Cryptographic Pairings over Barreto-Naehrig Curves`, Augusto Jun Devegili, Michael Scott, Ricardo Dahab https://eprint.iacr.org/2007/390.pdf
|
||||
- https://github.com/zcash/zcash/tree/master/src/snark
|
||||
- https://github.com/iden3/snarkjs
|
||||
- https://github.com/ethereum/py_ecc/tree/master/py_ecc/bn128
|
||||
|
||||
|
||||
#### Usage
|
||||
|
||||
- Pairing
|
||||
```go
|
||||
bn128, err := NewBn128()
|
||||
assert.Nil(t, err)
|
||||
|
||||
big25 := big.NewInt(int64(25))
|
||||
big30 := big.NewInt(int64(30))
|
||||
|
||||
g1a := bn128.G1.MulScalar(bn128.G1.G, big25)
|
||||
g2a := bn128.G2.MulScalar(bn128.G2.G, big30)
|
||||
|
||||
g1b := bn128.G1.MulScalar(bn128.G1.G, big30)
|
||||
g2b := bn128.G2.MulScalar(bn128.G2.G, big25)
|
||||
|
||||
pA, err := bn128.Pairing(g1a, g2a)
|
||||
assert.Nil(t, err)
|
||||
pB, err := bn128.Pairing(g1b, g2b)
|
||||
assert.Nil(t, err)
|
||||
assert.True(t, bn128.Fq12.Equal(pA, pB))
|
||||
```
|
||||
|
||||
|
||||
---
|
||||
|
||||
## Caution
|
||||
|
||||
@@ -1,4 +1,5 @@
|
||||
## Bn128
|
||||
[](https://godoc.org/github.com/arnaucube/go-snark/bn128) bn128
|
||||
Implementation of the bn128 pairing in Go.
|
||||
|
||||
|
||||
|
||||
54
r1csqap/README.md
Normal file
54
r1csqap/README.md
Normal file
@@ -0,0 +1,54 @@
|
||||
## R1CS to Quadratic Arithmetic Program
|
||||
[](https://godoc.org/github.com/arnaucube/go-snark/r1csqap) R1CS to QAP
|
||||
- `Succinct Non-Interactive Zero Knowledge for a von Neumann Architecture`, Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, Madars Virza https://eprint.iacr.org/2013/879.pdf
|
||||
- Vitalik Buterin blog post about QAP https://medium.com/@VitalikButerin/quadratic-arithmetic-programs-from-zero-to-hero-f6d558cea649
|
||||
- Ariel Gabizon in Zcash blog https://z.cash/blog/snark-explain5
|
||||
- Lagrange polynomial Wikipedia article https://en.wikipedia.org/wiki/Lagrange_polynomial
|
||||
|
||||
#### Usage
|
||||
- R1CS to QAP
|
||||
```go
|
||||
pf := NewPolynomialField(f)
|
||||
|
||||
b0 := big.NewInt(int64(0))
|
||||
b1 := big.NewInt(int64(1))
|
||||
b3 := big.NewInt(int64(3))
|
||||
b5 := big.NewInt(int64(5))
|
||||
b9 := big.NewInt(int64(9))
|
||||
b27 := big.NewInt(int64(27))
|
||||
b30 := big.NewInt(int64(30))
|
||||
b35 := big.NewInt(int64(35))
|
||||
a := [][]*big.Int{
|
||||
[]*big.Int{b0, b1, b0, b0, b0, b0},
|
||||
[]*big.Int{b0, b0, b0, b1, b0, b0},
|
||||
[]*big.Int{b0, b1, b0, b0, b1, b0},
|
||||
[]*big.Int{b5, b0, b0, b0, b0, b1},
|
||||
}
|
||||
b := [][]*big.Int{
|
||||
[]*big.Int{b0, b1, b0, b0, b0, b0},
|
||||
[]*big.Int{b0, b1, b0, b0, b0, b0},
|
||||
[]*big.Int{b1, b0, b0, b0, b0, b0},
|
||||
[]*big.Int{b1, b0, b0, b0, b0, b0},
|
||||
}
|
||||
c := [][]*big.Int{
|
||||
[]*big.Int{b0, b0, b0, b1, b0, b0},
|
||||
[]*big.Int{b0, b0, b0, b0, b1, b0},
|
||||
[]*big.Int{b0, b0, b0, b0, b0, b1},
|
||||
[]*big.Int{b0, b0, b1, b0, b0, b0},
|
||||
}
|
||||
alphas, betas, gammas, zx := pf.R1CSToQAP(a, b, c)
|
||||
fmt.Println(alphas)
|
||||
fmt.Println(betas)
|
||||
fmt.Println(gammas)
|
||||
fmt.Println(z)
|
||||
|
||||
w := []*big.Int{b1, b3, b35, b9, b27, b30}
|
||||
ax, bx, cx, px := pf.CombinePolynomials(w, alphas, betas, gammas)
|
||||
fmt.Println(ax)
|
||||
fmt.Println(bx)
|
||||
fmt.Println(cx)
|
||||
fmt.Println(px)
|
||||
|
||||
hx := pf.DivisorPolinomial(px, zx)
|
||||
fmt.Println(hx)
|
||||
```
|
||||
111
zk/zk.go
111
zk/zk.go
@@ -6,13 +6,16 @@ import (
|
||||
"math/big"
|
||||
|
||||
"github.com/arnaucube/go-snark/bn128"
|
||||
"github.com/arnaucube/go-snark/fields"
|
||||
)
|
||||
|
||||
type Setup struct {
|
||||
Toxic struct {
|
||||
T *big.Int // trusted setup secret
|
||||
Ka *big.Int // trusted setup
|
||||
Kb *big.Int // trusted setup
|
||||
Kc *big.Int // trusted setup
|
||||
Ka *big.Int // prover
|
||||
Kb *big.Int // prover
|
||||
Kc *big.Int // prover
|
||||
}
|
||||
|
||||
// public
|
||||
G1T [][3]*big.Int // t encrypted in G1 curve
|
||||
@@ -22,12 +25,12 @@ type Proof struct {
|
||||
PiA [3]*big.Int
|
||||
PiAp [3]*big.Int
|
||||
PiB [3][2]*big.Int
|
||||
PiBp [3][2]*big.Int
|
||||
PiBp [3]*big.Int
|
||||
PiC [3]*big.Int
|
||||
PiCp [3]*big.Int
|
||||
PiH [3]*big.Int
|
||||
Va [3][2]*big.Int
|
||||
Vb [3][2]*big.Int
|
||||
Vb [3]*big.Int
|
||||
Vc [3][2]*big.Int
|
||||
Vz [3][2]*big.Int
|
||||
}
|
||||
@@ -38,18 +41,18 @@ func GenerateTrustedSetup(bn bn128.Bn128, pollength int) (Setup, error) {
|
||||
var setup Setup
|
||||
var err error
|
||||
// generate random t value
|
||||
setup.T, err = rand.Prime(rand.Reader, bits)
|
||||
setup.Toxic.T, err = rand.Prime(rand.Reader, bits)
|
||||
if err != nil {
|
||||
return Setup{}, err
|
||||
}
|
||||
fmt.Print("trusted t: ")
|
||||
fmt.Println(setup.T)
|
||||
fmt.Println(setup.Toxic.T)
|
||||
|
||||
// encrypt t values with curve generators
|
||||
var gt1 [][3]*big.Int
|
||||
var gt2 [][3][2]*big.Int
|
||||
for i := 0; i < pollength; i++ {
|
||||
tPow := bn.Fq1.Exp(setup.T, big.NewInt(int64(i)))
|
||||
tPow := bn.Fq1.Exp(setup.Toxic.T, big.NewInt(int64(i)))
|
||||
tEncr1 := bn.G1.MulScalar(bn.G1.G, tPow)
|
||||
gt1 = append(gt1, tEncr1)
|
||||
tEncr2 := bn.G2.MulScalar(bn.G2.G, tPow)
|
||||
@@ -60,67 +63,73 @@ func GenerateTrustedSetup(bn bn128.Bn128, pollength int) (Setup, error) {
|
||||
setup.G1T = gt1
|
||||
setup.G2T = gt2
|
||||
|
||||
// k for pi'
|
||||
setup.Ka, err = rand.Prime(rand.Reader, bits)
|
||||
if err != nil {
|
||||
return Setup{}, err
|
||||
}
|
||||
setup.Kb, err = rand.Prime(rand.Reader, bits)
|
||||
if err != nil {
|
||||
return Setup{}, err
|
||||
}
|
||||
setup.Kc, err = rand.Prime(rand.Reader, bits)
|
||||
if err != nil {
|
||||
return Setup{}, err
|
||||
}
|
||||
|
||||
return setup, nil
|
||||
}
|
||||
|
||||
func GenerateProofs(bn bn128.Bn128, setup Setup, ax, bx, cx, hx, zx []*big.Int) Proof {
|
||||
func GenerateProofs(bn bn128.Bn128, f fields.Fq, setup Setup, ax, bx, cx, hx, zx []*big.Int) (Proof, error) {
|
||||
var proof Proof
|
||||
var err error
|
||||
|
||||
// g1*A(x)
|
||||
// k for calculating pi' and Vk
|
||||
setup.Toxic.Ka, err = rand.Prime(rand.Reader, bits)
|
||||
if err != nil {
|
||||
return Proof{}, err
|
||||
}
|
||||
setup.Toxic.Kb, err = rand.Prime(rand.Reader, bits)
|
||||
if err != nil {
|
||||
return Proof{}, err
|
||||
}
|
||||
setup.Toxic.Kc, err = rand.Prime(rand.Reader, bits)
|
||||
if err != nil {
|
||||
return Proof{}, err
|
||||
}
|
||||
|
||||
// g1*A(t)
|
||||
proof.PiA = [3]*big.Int{bn.G1.F.Zero(), bn.G1.F.Zero(), bn.G1.F.Zero()}
|
||||
for i := 0; i < len(ax); i++ {
|
||||
m := bn.G1.MulScalar(setup.G1T[i], ax[i])
|
||||
proof.PiA = bn.G1.Add(proof.PiA, m)
|
||||
}
|
||||
proof.PiAp = bn.G1.MulScalar(proof.PiA, setup.Ka)
|
||||
proof.PiAp = bn.G1.MulScalar(proof.PiA, setup.Toxic.Ka)
|
||||
|
||||
// g1*B(x)
|
||||
// g2*B(t)
|
||||
proof.PiB = bn.Fq6.Zero()
|
||||
// g1*B(t)
|
||||
pib1 := [3]*big.Int{bn.G1.F.Zero(), bn.G1.F.Zero(), bn.G1.F.Zero()}
|
||||
for i := 0; i < len(bx); i++ {
|
||||
m := bn.G2.MulScalar(setup.G2T[i], bx[i])
|
||||
proof.PiB = bn.G2.Add(proof.PiB, m)
|
||||
m1 := bn.G1.MulScalar(setup.G1T[i], bx[i])
|
||||
pib1 = bn.G1.Add(pib1, m1)
|
||||
}
|
||||
proof.PiBp = bn.G2.MulScalar(proof.PiB, setup.Kb)
|
||||
proof.PiBp = bn.G1.MulScalar(pib1, setup.Toxic.Kb)
|
||||
|
||||
// g1*C(x)
|
||||
// g1*C(t)
|
||||
proof.PiC = [3]*big.Int{bn.G1.F.Zero(), bn.G1.F.Zero(), bn.G1.F.Zero()}
|
||||
for i := 0; i < len(cx); i++ {
|
||||
m := bn.G1.MulScalar(setup.G1T[i], cx[i])
|
||||
proof.PiC = bn.G1.Add(proof.PiC, m)
|
||||
}
|
||||
proof.PiCp = bn.G1.MulScalar(proof.PiC, setup.Kc)
|
||||
proof.PiCp = bn.G1.MulScalar(proof.PiC, setup.Toxic.Kc)
|
||||
|
||||
g1Ht := [3]*big.Int{bn.G1.F.Zero(), bn.G1.F.Zero(), bn.G1.F.Zero()}
|
||||
// g1*H(t)
|
||||
proof.PiH = [3]*big.Int{bn.G1.F.Zero(), bn.G1.F.Zero(), bn.G1.F.Zero()}
|
||||
for i := 0; i < len(hx); i++ {
|
||||
m := bn.G1.MulScalar(setup.G1T[i], hx[i])
|
||||
g1Ht = bn.G1.Add(g1Ht, m)
|
||||
proof.PiH = bn.G1.Add(proof.PiH, m)
|
||||
}
|
||||
|
||||
g2Zt := bn.Fq6.Zero()
|
||||
for i := 0; i < len(bx); i++ {
|
||||
m := bn.G2.MulScalar(setup.G2T[i], zx[i])
|
||||
g2Zt = bn.G2.Add(g2Zt, m)
|
||||
}
|
||||
proof.PiH = g1Ht
|
||||
proof.Vz = g2Zt
|
||||
proof.Va = bn.G2.MulScalar(bn.G2.G, setup.Ka)
|
||||
proof.Vb = bn.G2.MulScalar(bn.G2.G, setup.Kb)
|
||||
proof.Vc = bn.G2.MulScalar(bn.G2.G, setup.Kc)
|
||||
proof.Va = bn.G2.MulScalar(bn.G2.G, setup.Toxic.Ka)
|
||||
proof.Vb = bn.G1.MulScalar(bn.G1.G, setup.Toxic.Kb)
|
||||
proof.Vc = bn.G2.MulScalar(bn.G2.G, setup.Toxic.Kc)
|
||||
|
||||
return proof
|
||||
return proof, nil
|
||||
}
|
||||
|
||||
func VerifyProof(bn bn128.Bn128, setup Setup, proof Proof) bool {
|
||||
@@ -138,7 +147,18 @@ func VerifyProof(bn bn128.Bn128, setup Setup, proof Proof) bool {
|
||||
return false
|
||||
}
|
||||
|
||||
// e(piB, Vb) == e(piB', g2)
|
||||
// e(Vb, piB) == e(piB', g2)
|
||||
pairingVbPib, err := bn.Pairing(proof.Vb, proof.PiB)
|
||||
if err != nil {
|
||||
return false
|
||||
}
|
||||
pairingPibpG2, err := bn.Pairing(proof.PiBp, bn.G2.G)
|
||||
if err != nil {
|
||||
return false
|
||||
}
|
||||
if !bn.Fq12.Equal(pairingVbPib, pairingPibpG2) {
|
||||
return false
|
||||
}
|
||||
|
||||
// e(piC, Vc) == e(piC', g2)
|
||||
pairingPicVc, err := bn.Pairing(proof.PiC, proof.Vc)
|
||||
@@ -153,7 +173,22 @@ func VerifyProof(bn bn128.Bn128, setup Setup, proof Proof) bool {
|
||||
return false
|
||||
}
|
||||
|
||||
//
|
||||
// e(piA, piB) == e(piH, Vz) * e(piC, g2)
|
||||
// pairingPiaPib, err := bn.Pairing(proof.PiA, proof.PiB)
|
||||
// if err != nil {
|
||||
// return false
|
||||
// }
|
||||
// pairingPihVz, err := bn.Pairing(proof.PiH, proof.Vz)
|
||||
// if err != nil {
|
||||
// return false
|
||||
// }
|
||||
// pairingPicG2, err := bn.Pairing(proof.PiC, bn.G2.G)
|
||||
// if err != nil {
|
||||
// return false
|
||||
// }
|
||||
// if !bn.Fq12.Equal(pairingPiaPib, bn.Fq12.Mul(pairingPihVz, pairingPicG2)) {
|
||||
// return false
|
||||
// }
|
||||
|
||||
return true
|
||||
}
|
||||
|
||||
@@ -71,7 +71,8 @@ func TestZk(t *testing.T) {
|
||||
fmt.Println(setup.G2T)
|
||||
|
||||
// piA = g1 * A(t), piB = g2 * B(t), piC = g1 * C(t), piH = g1 * H(t)
|
||||
proof := GenerateProofs(bn, setup, ax, bx, cx, hx, zx)
|
||||
proof, err := GenerateProofs(bn, f, setup, ax, bx, cx, hx, zx)
|
||||
assert.Nil(t, err)
|
||||
fmt.Println("proofs:")
|
||||
fmt.Println(proof.PiA)
|
||||
fmt.Println(proof.PiB)
|
||||
@@ -79,5 +80,10 @@ func TestZk(t *testing.T) {
|
||||
fmt.Println(proof.PiH)
|
||||
fmt.Println(proof.Vz)
|
||||
|
||||
assert.True(t, VerifyProof(bn, setup, proof))
|
||||
publicSetup := Setup{
|
||||
G1T: setup.G1T,
|
||||
G2T: setup.G2T,
|
||||
}
|
||||
|
||||
assert.True(t, VerifyProof(bn, publicSetup, proof))
|
||||
}
|
||||
|
||||
Reference in New Issue
Block a user