mirror of
https://github.com/arnaucube/go-snark-study.git
synced 2026-02-02 17:26:41 +01:00
doing trusted setup
This commit is contained in:
80
README.md
80
README.md
@@ -2,15 +2,13 @@
|
|||||||
|
|
||||||
zk-SNARK library implementation in Go
|
zk-SNARK library implementation in Go
|
||||||
|
|
||||||
Not finished, work in progress (doing this in my free time, so I don't have much time).
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
#### Test
|
#### Test
|
||||||
```
|
```
|
||||||
go test ./... -v
|
go test ./... -v
|
||||||
```
|
```
|
||||||
|
|
||||||
|
|
||||||
## R1CS to Quadratic Arithmetic Program
|
## R1CS to Quadratic Arithmetic Program
|
||||||
- `Succinct Non-Interactive Zero Knowledge for a von Neumann Architecture`, Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, Madars Virza https://eprint.iacr.org/2013/879.pdf
|
- `Succinct Non-Interactive Zero Knowledge for a von Neumann Architecture`, Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, Madars Virza https://eprint.iacr.org/2013/879.pdf
|
||||||
- Vitalik Buterin blog post about QAP https://medium.com/@VitalikButerin/quadratic-arithmetic-programs-from-zero-to-hero-f6d558cea649
|
- Vitalik Buterin blog post about QAP https://medium.com/@VitalikButerin/quadratic-arithmetic-programs-from-zero-to-hero-f6d558cea649
|
||||||
@@ -20,39 +18,49 @@ go test ./... -v
|
|||||||
#### Usage
|
#### Usage
|
||||||
- R1CS to QAP
|
- R1CS to QAP
|
||||||
```go
|
```go
|
||||||
b0 := big.NewFloat(float64(0))
|
pf := NewPolynomialField(f)
|
||||||
b1 := big.NewFloat(float64(1))
|
|
||||||
b5 := big.NewFloat(float64(5))
|
b0 := big.NewInt(int64(0))
|
||||||
a := [][]*big.Float{
|
b1 := big.NewInt(int64(1))
|
||||||
[]*big.Float{b0, b1, b0, b0, b0, b0},
|
b3 := big.NewInt(int64(3))
|
||||||
[]*big.Float{b0, b0, b0, b1, b0, b0},
|
b5 := big.NewInt(int64(5))
|
||||||
[]*big.Float{b0, b1, b0, b0, b1, b0},
|
b9 := big.NewInt(int64(9))
|
||||||
[]*big.Float{b5, b0, b0, b0, b0, b1},
|
b27 := big.NewInt(int64(27))
|
||||||
|
b30 := big.NewInt(int64(30))
|
||||||
|
b35 := big.NewInt(int64(35))
|
||||||
|
a := [][]*big.Int{
|
||||||
|
[]*big.Int{b0, b1, b0, b0, b0, b0},
|
||||||
|
[]*big.Int{b0, b0, b0, b1, b0, b0},
|
||||||
|
[]*big.Int{b0, b1, b0, b0, b1, b0},
|
||||||
|
[]*big.Int{b5, b0, b0, b0, b0, b1},
|
||||||
}
|
}
|
||||||
b := [][]*big.Float{
|
b := [][]*big.Int{
|
||||||
[]*big.Float{b0, b1, b0, b0, b0, b0},
|
[]*big.Int{b0, b1, b0, b0, b0, b0},
|
||||||
[]*big.Float{b0, b1, b0, b0, b0, b0},
|
[]*big.Int{b0, b1, b0, b0, b0, b0},
|
||||||
[]*big.Float{b1, b0, b0, b0, b0, b0},
|
[]*big.Int{b1, b0, b0, b0, b0, b0},
|
||||||
[]*big.Float{b1, b0, b0, b0, b0, b0},
|
[]*big.Int{b1, b0, b0, b0, b0, b0},
|
||||||
}
|
}
|
||||||
c := [][]*big.Float{
|
c := [][]*big.Int{
|
||||||
[]*big.Float{b0, b0, b0, b1, b0, b0},
|
[]*big.Int{b0, b0, b0, b1, b0, b0},
|
||||||
[]*big.Float{b0, b0, b0, b0, b1, b0},
|
[]*big.Int{b0, b0, b0, b0, b1, b0},
|
||||||
[]*big.Float{b0, b0, b0, b0, b0, b1},
|
[]*big.Int{b0, b0, b0, b0, b0, b1},
|
||||||
[]*big.Float{b0, b0, b1, b0, b0, b0},
|
[]*big.Int{b0, b0, b1, b0, b0, b0},
|
||||||
}
|
}
|
||||||
alpha, beta, gamma, z := R1CSToQAP(a, b, c)
|
alphas, betas, gammas, zx := pf.R1CSToQAP(a, b, c)
|
||||||
fmt.Println(alpha)
|
fmt.Println(alphas)
|
||||||
fmt.Println(beta)
|
fmt.Println(betas)
|
||||||
fmt.Println(gamma)
|
fmt.Println(gammas)
|
||||||
fmt.Println(z)
|
fmt.Println(z)
|
||||||
/*
|
|
||||||
out:
|
w := []*big.Int{b1, b3, b35, b9, b27, b30}
|
||||||
alpha: [[-5 9.166666666666666 -5 0.8333333333333334] [8 -11.333333333333332 5 -0.6666666666666666] [0 0 0 0] [-6 9.5 -4 0.5] [4 -7 3.5 -0.5] [-1 1.8333333333333333 -1 0.16666666666666666]]
|
ax, bx, cx, px := pf.CombinePolynomials(w, alphas, betas, gammas)
|
||||||
beta: [[3 -5.166666666666667 2.5 -0.33333333333333337] [-2 5.166666666666667 -2.5 0.33333333333333337] [0 0 0 0] [0 0 0 0] [0 0 0 0] [0 0 0 0]]
|
fmt.Println(ax)
|
||||||
gamma: [[0 0 0 0] [0 0 0 0] [-1 1.8333333333333333 -1 0.16666666666666666] [4 -4.333333333333333 1.5 -0.16666666666666666] [-6 9.5 -4 0.5] [4 -7 3.5 -0.5]]
|
fmt.Println(bx)
|
||||||
z: [24 -50 35 -10 1]
|
fmt.Println(cx)
|
||||||
*/
|
fmt.Println(px)
|
||||||
|
|
||||||
|
hx := pf.DivisorPolinomial(px, zx)
|
||||||
|
fmt.Println(hx)
|
||||||
```
|
```
|
||||||
|
|
||||||
## Bn128
|
## Bn128
|
||||||
@@ -97,3 +105,11 @@ pB, err := bn128.Pairing(g1b, g2b)
|
|||||||
assert.Nil(t, err)
|
assert.Nil(t, err)
|
||||||
assert.True(t, bn128.Fq12.Equal(pA, pB))
|
assert.True(t, bn128.Fq12.Equal(pA, pB))
|
||||||
```
|
```
|
||||||
|
|
||||||
|
|
||||||
|
---
|
||||||
|
|
||||||
|
## Caution
|
||||||
|
Not finished, work in progress (implementing this in my free time to understand it better, so I don't have much time).
|
||||||
|
|
||||||
|
Thanks to @jbaylina, @bellesmarta, @adriamb for their explanations that helped to understand a little bit this.
|
||||||
|
|||||||
@@ -137,17 +137,17 @@ func (pf PolynomialField) R1CSToQAP(a, b, c [][]*big.Int) ([][]*big.Int, [][]*bi
|
|||||||
aT := Transpose(a)
|
aT := Transpose(a)
|
||||||
bT := Transpose(b)
|
bT := Transpose(b)
|
||||||
cT := Transpose(c)
|
cT := Transpose(c)
|
||||||
var alpha [][]*big.Int
|
var alphas [][]*big.Int
|
||||||
for i := 0; i < len(aT); i++ {
|
for i := 0; i < len(aT); i++ {
|
||||||
alpha = append(alpha, pf.LagrangeInterpolation(aT[i]))
|
alphas = append(alphas, pf.LagrangeInterpolation(aT[i]))
|
||||||
}
|
}
|
||||||
var beta [][]*big.Int
|
var betas [][]*big.Int
|
||||||
for i := 0; i < len(bT); i++ {
|
for i := 0; i < len(bT); i++ {
|
||||||
beta = append(beta, pf.LagrangeInterpolation(bT[i]))
|
betas = append(betas, pf.LagrangeInterpolation(bT[i]))
|
||||||
}
|
}
|
||||||
var gamma [][]*big.Int
|
var gammas [][]*big.Int
|
||||||
for i := 0; i < len(cT); i++ {
|
for i := 0; i < len(cT); i++ {
|
||||||
gamma = append(gamma, pf.LagrangeInterpolation(cT[i]))
|
gammas = append(gammas, pf.LagrangeInterpolation(cT[i]))
|
||||||
}
|
}
|
||||||
z := []*big.Int{big.NewInt(int64(1))}
|
z := []*big.Int{big.NewInt(int64(1))}
|
||||||
for i := 1; i < len(aT[0])+1; i++ {
|
for i := 1; i < len(aT[0])+1; i++ {
|
||||||
@@ -155,10 +155,10 @@ func (pf PolynomialField) R1CSToQAP(a, b, c [][]*big.Int) ([][]*big.Int, [][]*bi
|
|||||||
b1 := big.NewInt(int64(1))
|
b1 := big.NewInt(int64(1))
|
||||||
z = pf.Mul(z, []*big.Int{ineg, b1})
|
z = pf.Mul(z, []*big.Int{ineg, b1})
|
||||||
}
|
}
|
||||||
return alpha, beta, gamma, z
|
return alphas, betas, gammas, z
|
||||||
}
|
}
|
||||||
|
|
||||||
func (pf PolynomialField) SolPolynomials(r []*big.Int, ap, bp, cp [][]*big.Int) ([]*big.Int, []*big.Int, []*big.Int, []*big.Int) {
|
func (pf PolynomialField) CombinePolynomials(r []*big.Int, ap, bp, cp [][]*big.Int) ([]*big.Int, []*big.Int, []*big.Int, []*big.Int) {
|
||||||
var alpha []*big.Int
|
var alpha []*big.Int
|
||||||
for i := 0; i < len(r); i++ {
|
for i := 0; i < len(r); i++ {
|
||||||
m := pf.Mul([]*big.Int{r[i]}, ap[i])
|
m := pf.Mul([]*big.Int{r[i]}, ap[i])
|
||||||
|
|||||||
@@ -132,27 +132,30 @@ func TestR1CSToQAP(t *testing.T) {
|
|||||||
[]*big.Int{b0, b0, b0, b0, b0, b1},
|
[]*big.Int{b0, b0, b0, b0, b0, b1},
|
||||||
[]*big.Int{b0, b0, b1, b0, b0, b0},
|
[]*big.Int{b0, b0, b1, b0, b0, b0},
|
||||||
}
|
}
|
||||||
ap, bp, cp, z := pf.R1CSToQAP(a, b, c)
|
alphas, betas, gammas, zx := pf.R1CSToQAP(a, b, c)
|
||||||
fmt.Println(ap)
|
fmt.Println(alphas)
|
||||||
fmt.Println(bp)
|
fmt.Println(betas)
|
||||||
fmt.Println(cp)
|
fmt.Println(gammas)
|
||||||
fmt.Println(z)
|
fmt.Print("Z(x): ")
|
||||||
|
fmt.Println(zx)
|
||||||
|
|
||||||
w := []*big.Int{b1, b3, b35, b9, b27, b30}
|
w := []*big.Int{b1, b3, b35, b9, b27, b30}
|
||||||
alpha, beta, gamma, px := pf.SolPolynomials(w, ap, bp, cp)
|
ax, bx, cx, px := pf.CombinePolynomials(w, alphas, betas, gammas)
|
||||||
fmt.Println(alpha)
|
fmt.Println(ax)
|
||||||
fmt.Println(beta)
|
fmt.Println(bx)
|
||||||
fmt.Println(gamma)
|
fmt.Println(cx)
|
||||||
fmt.Println(px)
|
fmt.Println(px)
|
||||||
|
|
||||||
h := pf.DivisorPolinomial(px, z)
|
hx := pf.DivisorPolinomial(px, zx)
|
||||||
fmt.Println(h)
|
fmt.Println(hx)
|
||||||
|
|
||||||
// h==px/z so px==h*z
|
// hx==px/zx so px==hx*zx
|
||||||
assert.Equal(t, px, pf.Mul(h, z))
|
assert.Equal(t, px, pf.Mul(hx, zx))
|
||||||
|
|
||||||
// a(x) * b(x) - c(x) == h * z(x)
|
// p(x) = a(x) * b(x) - c(x) == h(x) * z(x)
|
||||||
abc := pf.Sub(pf.Mul(alpha, beta), gamma)
|
abc := pf.Sub(pf.Mul(ax, bx), cx)
|
||||||
hz := pf.Mul(h, z)
|
assert.Equal(t, abc, px)
|
||||||
|
hz := pf.Mul(hx, zx)
|
||||||
assert.Equal(t, abc, hz)
|
assert.Equal(t, abc, hz)
|
||||||
|
|
||||||
}
|
}
|
||||||
|
|||||||
@@ -137,17 +137,17 @@ func R1CSToQAP(a, b, c [][]*big.Float) ([][]*big.Float, [][]*big.Float, [][]*big
|
|||||||
aT := Transpose(a)
|
aT := Transpose(a)
|
||||||
bT := Transpose(b)
|
bT := Transpose(b)
|
||||||
cT := Transpose(c)
|
cT := Transpose(c)
|
||||||
var alpha [][]*big.Float
|
var alphas [][]*big.Float
|
||||||
for i := 0; i < len(aT); i++ {
|
for i := 0; i < len(aT); i++ {
|
||||||
alpha = append(alpha, LagrangeInterpolation(aT[i]))
|
alphas = append(alphas, LagrangeInterpolation(aT[i]))
|
||||||
}
|
}
|
||||||
var beta [][]*big.Float
|
var betas [][]*big.Float
|
||||||
for i := 0; i < len(bT); i++ {
|
for i := 0; i < len(bT); i++ {
|
||||||
beta = append(beta, LagrangeInterpolation(bT[i]))
|
betas = append(betas, LagrangeInterpolation(bT[i]))
|
||||||
}
|
}
|
||||||
var gamma [][]*big.Float
|
var gammas [][]*big.Float
|
||||||
for i := 0; i < len(cT); i++ {
|
for i := 0; i < len(cT); i++ {
|
||||||
gamma = append(gamma, LagrangeInterpolation(cT[i]))
|
gammas = append(gammas, LagrangeInterpolation(cT[i]))
|
||||||
}
|
}
|
||||||
z := []*big.Float{big.NewFloat(float64(1))}
|
z := []*big.Float{big.NewFloat(float64(1))}
|
||||||
for i := 1; i < len(aT[0])+1; i++ {
|
for i := 1; i < len(aT[0])+1; i++ {
|
||||||
@@ -155,10 +155,10 @@ func R1CSToQAP(a, b, c [][]*big.Float) ([][]*big.Float, [][]*big.Float, [][]*big
|
|||||||
b1 := big.NewFloat(float64(1))
|
b1 := big.NewFloat(float64(1))
|
||||||
z = PolMul(z, []*big.Float{ineg, b1})
|
z = PolMul(z, []*big.Float{ineg, b1})
|
||||||
}
|
}
|
||||||
return alpha, beta, gamma, z
|
return alphas, betas, gammas, z
|
||||||
}
|
}
|
||||||
|
|
||||||
func SolPolynomials(r []*big.Float, ap, bp, cp [][]*big.Float) ([]*big.Float, []*big.Float, []*big.Float, []*big.Float) {
|
func CombinePolynomials(r []*big.Float, ap, bp, cp [][]*big.Float) ([]*big.Float, []*big.Float, []*big.Float, []*big.Float) {
|
||||||
var alpha []*big.Float
|
var alpha []*big.Float
|
||||||
for i := 0; i < len(r); i++ {
|
for i := 0; i < len(r); i++ {
|
||||||
m := PolMul([]*big.Float{r[i]}, ap[i])
|
m := PolMul([]*big.Float{r[i]}, ap[i])
|
||||||
|
|||||||
@@ -108,21 +108,30 @@ func TestR1CSToQAP(t *testing.T) {
|
|||||||
[]*big.Float{b0, b0, b0, b0, b0, b1},
|
[]*big.Float{b0, b0, b0, b0, b0, b1},
|
||||||
[]*big.Float{b0, b0, b1, b0, b0, b0},
|
[]*big.Float{b0, b0, b1, b0, b0, b0},
|
||||||
}
|
}
|
||||||
ap, bp, cp, z := R1CSToQAP(a, b, c)
|
// alphas, betas, gammas
|
||||||
fmt.Println(ap)
|
alphas, betas, gammas, zx := R1CSToQAP(a, b, c)
|
||||||
fmt.Println(bp)
|
fmt.Println(alphas)
|
||||||
fmt.Println(cp)
|
fmt.Println(betas)
|
||||||
fmt.Println(z)
|
fmt.Println(gammas)
|
||||||
|
fmt.Print("Z(x): ")
|
||||||
|
fmt.Println(zx)
|
||||||
zexpected := []*big.Float{big.NewFloat(float64(24)), big.NewFloat(float64(-50)), big.NewFloat(float64(35)), big.NewFloat(float64(-10)), big.NewFloat(float64(1))}
|
zexpected := []*big.Float{big.NewFloat(float64(24)), big.NewFloat(float64(-50)), big.NewFloat(float64(35)), big.NewFloat(float64(-10)), big.NewFloat(float64(1))}
|
||||||
assert.Equal(t, z, zexpected)
|
assert.Equal(t, zx, zexpected)
|
||||||
|
|
||||||
|
// witness
|
||||||
w := []*big.Float{b1, b3, b35, b9, b27, b30}
|
w := []*big.Float{b1, b3, b35, b9, b27, b30}
|
||||||
alpha, beta, gamma, px := SolPolynomials(w, ap, bp, cp)
|
fmt.Print("w: ")
|
||||||
fmt.Println(alpha)
|
fmt.Println(w)
|
||||||
fmt.Println(beta)
|
// QAP A(x), B(x), C(x)
|
||||||
fmt.Println(gamma)
|
ax, bx, cx, px := CombinePolynomials(w, alphas, betas, gammas)
|
||||||
|
fmt.Print("A(x), B(x), C(x), P(x): ")
|
||||||
|
fmt.Println(ax)
|
||||||
|
fmt.Println(bx)
|
||||||
|
fmt.Println(cx)
|
||||||
fmt.Println(px)
|
fmt.Println(px)
|
||||||
|
|
||||||
h := DivisorPolinomial(px, z)
|
hx := DivisorPolinomial(px, zx)
|
||||||
fmt.Println(h)
|
fmt.Print("H(x): ")
|
||||||
|
fmt.Println(hx)
|
||||||
|
|
||||||
}
|
}
|
||||||
|
|||||||
69
zk/zk.go
Normal file
69
zk/zk.go
Normal file
@@ -0,0 +1,69 @@
|
|||||||
|
package zk
|
||||||
|
|
||||||
|
import (
|
||||||
|
"crypto/rand"
|
||||||
|
"fmt"
|
||||||
|
"math/big"
|
||||||
|
|
||||||
|
"github.com/arnaucube/go-snark/bn128"
|
||||||
|
)
|
||||||
|
|
||||||
|
const bits = 512
|
||||||
|
|
||||||
|
func GenerateTrustedSetup(bn bn128.Bn128, pollength int) ([][3]*big.Int, [][3][2]*big.Int, error) {
|
||||||
|
// generate random t value
|
||||||
|
t, err := rand.Prime(rand.Reader, bits)
|
||||||
|
if err != nil {
|
||||||
|
return [][3]*big.Int{}, [][3][2]*big.Int{}, err
|
||||||
|
}
|
||||||
|
fmt.Print("trusted t: ")
|
||||||
|
fmt.Println(t)
|
||||||
|
|
||||||
|
// encrypt t values with curve generators
|
||||||
|
var gt1 [][3]*big.Int
|
||||||
|
var gt2 [][3][2]*big.Int
|
||||||
|
for i := 0; i < pollength; i++ {
|
||||||
|
tPow := bn.Fq1.Exp(t, big.NewInt(int64(i)))
|
||||||
|
tEncr1 := bn.G1.MulScalar(bn.G1.G, tPow)
|
||||||
|
gt1 = append(gt1, tEncr1)
|
||||||
|
tEncr2 := bn.G2.MulScalar(bn.G2.G, tPow)
|
||||||
|
gt2 = append(gt2, tEncr2)
|
||||||
|
}
|
||||||
|
// gt1: g1, g1*t, g1*t^2, g1*t^3, ...
|
||||||
|
// gt2: g2, g2*t, g2*t^2, ...
|
||||||
|
return gt1, gt2, nil
|
||||||
|
}
|
||||||
|
func GenerateProofs(bn bn128.Bn128, gt1 [][3]*big.Int, gt2 [][3][2]*big.Int, ax, bx, cx, hx, zx []*big.Int) ([3]*big.Int, [3][2]*big.Int, [3]*big.Int, [3]*big.Int, [3][2]*big.Int) {
|
||||||
|
|
||||||
|
// multiply g1*A(x), g2*B(x), g1*C(x), g1*H(x)
|
||||||
|
|
||||||
|
// g1*A(x)
|
||||||
|
g1At := [3]*big.Int{bn.G1.F.Zero(), bn.G1.F.Zero(), bn.G1.F.Zero()}
|
||||||
|
for i := 0; i < len(ax); i++ {
|
||||||
|
m := bn.G1.MulScalar(gt1[i], ax[i])
|
||||||
|
g1At = bn.G1.Add(g1At, m)
|
||||||
|
}
|
||||||
|
g2Bt := bn.Fq6.Zero()
|
||||||
|
for i := 0; i < len(bx); i++ {
|
||||||
|
m := bn.G2.MulScalar(gt2[i], bx[i])
|
||||||
|
g2Bt = bn.G2.Add(g2Bt, m)
|
||||||
|
}
|
||||||
|
|
||||||
|
g1Ct := [3]*big.Int{bn.G1.F.Zero(), bn.G1.F.Zero(), bn.G1.F.Zero()}
|
||||||
|
for i := 0; i < len(cx); i++ {
|
||||||
|
m := bn.G1.MulScalar(gt1[i], cx[i])
|
||||||
|
g1Ct = bn.G1.Add(g1Ct, m)
|
||||||
|
}
|
||||||
|
g1Ht := [3]*big.Int{bn.G1.F.Zero(), bn.G1.F.Zero(), bn.G1.F.Zero()}
|
||||||
|
for i := 0; i < len(hx); i++ {
|
||||||
|
m := bn.G1.MulScalar(gt1[i], hx[i])
|
||||||
|
g1Ht = bn.G1.Add(g1Ht, m)
|
||||||
|
}
|
||||||
|
g2Zt := bn.Fq6.Zero()
|
||||||
|
for i := 0; i < len(bx); i++ {
|
||||||
|
m := bn.G2.MulScalar(gt2[i], zx[i])
|
||||||
|
g2Zt = bn.G2.Add(g2Zt, m)
|
||||||
|
}
|
||||||
|
|
||||||
|
return g1At, g2Bt, g1Ct, g1Ht, g2Zt
|
||||||
|
}
|
||||||
96
zk/zk_test.go
Normal file
96
zk/zk_test.go
Normal file
@@ -0,0 +1,96 @@
|
|||||||
|
package zk
|
||||||
|
|
||||||
|
import (
|
||||||
|
"fmt"
|
||||||
|
"math/big"
|
||||||
|
"testing"
|
||||||
|
|
||||||
|
"github.com/arnaucube/go-snark/bn128"
|
||||||
|
"github.com/arnaucube/go-snark/fields"
|
||||||
|
"github.com/arnaucube/go-snark/r1csqap"
|
||||||
|
"github.com/stretchr/testify/assert"
|
||||||
|
)
|
||||||
|
|
||||||
|
func TestZk(t *testing.T) {
|
||||||
|
bn, err := bn128.NewBn128()
|
||||||
|
assert.Nil(t, err)
|
||||||
|
|
||||||
|
// new Finite Field
|
||||||
|
f := fields.NewFq(bn.R)
|
||||||
|
|
||||||
|
// new Polynomial Field
|
||||||
|
pf := r1csqap.NewPolynomialField(f)
|
||||||
|
|
||||||
|
b0 := big.NewInt(int64(0))
|
||||||
|
b1 := big.NewInt(int64(1))
|
||||||
|
b3 := big.NewInt(int64(3))
|
||||||
|
b5 := big.NewInt(int64(5))
|
||||||
|
b9 := big.NewInt(int64(9))
|
||||||
|
b27 := big.NewInt(int64(27))
|
||||||
|
b30 := big.NewInt(int64(30))
|
||||||
|
b35 := big.NewInt(int64(35))
|
||||||
|
a := [][]*big.Int{
|
||||||
|
[]*big.Int{b0, b1, b0, b0, b0, b0},
|
||||||
|
[]*big.Int{b0, b0, b0, b1, b0, b0},
|
||||||
|
[]*big.Int{b0, b1, b0, b0, b1, b0},
|
||||||
|
[]*big.Int{b5, b0, b0, b0, b0, b1},
|
||||||
|
}
|
||||||
|
b := [][]*big.Int{
|
||||||
|
[]*big.Int{b0, b1, b0, b0, b0, b0},
|
||||||
|
[]*big.Int{b0, b1, b0, b0, b0, b0},
|
||||||
|
[]*big.Int{b1, b0, b0, b0, b0, b0},
|
||||||
|
[]*big.Int{b1, b0, b0, b0, b0, b0},
|
||||||
|
}
|
||||||
|
c := [][]*big.Int{
|
||||||
|
[]*big.Int{b0, b0, b0, b1, b0, b0},
|
||||||
|
[]*big.Int{b0, b0, b0, b0, b1, b0},
|
||||||
|
[]*big.Int{b0, b0, b0, b0, b0, b1},
|
||||||
|
[]*big.Int{b0, b0, b1, b0, b0, b0},
|
||||||
|
}
|
||||||
|
alphas, betas, gammas, zx := pf.R1CSToQAP(a, b, c)
|
||||||
|
|
||||||
|
w := []*big.Int{b1, b3, b35, b9, b27, b30}
|
||||||
|
ax, bx, cx, px := pf.CombinePolynomials(w, alphas, betas, gammas)
|
||||||
|
|
||||||
|
hx := pf.DivisorPolinomial(px, zx)
|
||||||
|
|
||||||
|
// hx==px/zx so px==hx*zx
|
||||||
|
assert.Equal(t, px, pf.Mul(hx, zx))
|
||||||
|
|
||||||
|
// p(x) = a(x) * b(x) - c(x) == h(x) * z(x)
|
||||||
|
abc := pf.Sub(pf.Mul(ax, bx), cx)
|
||||||
|
assert.Equal(t, abc, px)
|
||||||
|
hz := pf.Mul(hx, zx)
|
||||||
|
assert.Equal(t, abc, hz)
|
||||||
|
|
||||||
|
// calculate trusted setup
|
||||||
|
gt1, gt2, err := GenerateTrustedSetup(bn, len(ax))
|
||||||
|
assert.Nil(t, err)
|
||||||
|
fmt.Println("trusted setup:")
|
||||||
|
fmt.Println(gt1)
|
||||||
|
fmt.Println(gt2)
|
||||||
|
|
||||||
|
// piA = g1 * A(t), piB = g2 * B(t), piC = g1 * C(t), piH = g1 * H(t)
|
||||||
|
piA, piB, piC, piH, piZ := GenerateProofs(bn, gt1, gt2, ax, bx, cx, hx, zx)
|
||||||
|
fmt.Println("proofs:")
|
||||||
|
fmt.Println(piA)
|
||||||
|
fmt.Println(piB)
|
||||||
|
fmt.Println(piC)
|
||||||
|
fmt.Println(piH)
|
||||||
|
fmt.Println(piZ)
|
||||||
|
|
||||||
|
// pairing
|
||||||
|
fmt.Println("pairing")
|
||||||
|
pairingAB, err := bn.Pairing(piA, piB)
|
||||||
|
assert.Nil(t, err)
|
||||||
|
pairingCg2, err := bn.Pairing(piC, bn.G2.G)
|
||||||
|
assert.Nil(t, err)
|
||||||
|
pairingLeft := bn.Fq12.Div(pairingAB, pairingCg2)
|
||||||
|
pairingHg2Z, err := bn.Pairing(piH, piZ)
|
||||||
|
assert.Nil(t, err)
|
||||||
|
|
||||||
|
fmt.Println(bn.Fq12.Affine(pairingLeft))
|
||||||
|
fmt.Println(bn.Fq12.Affine(pairingHg2Z))
|
||||||
|
|
||||||
|
assert.True(t, bn.Fq12.Equal(pairingLeft, pairingHg2Z))
|
||||||
|
}
|
||||||
Reference in New Issue
Block a user