mirror of
https://github.com/arnaucube/go-snark-study.git
synced 2026-02-02 17:26:41 +01:00
Merge pull request #5 from arnaucube/fix/circuitcompiler
Fix/circuitcompiler
This commit is contained in:
@@ -6,7 +6,7 @@ zkSNARK library implementation in Go
|
||||
- `Succinct Non-Interactive Zero Knowledge for a von Neumann Architecture`, Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, Madars Virza https://eprint.iacr.org/2013/879.pdf
|
||||
- `Pinocchio: Nearly practical verifiable computation`, Bryan Parno, Craig Gentry, Jon Howell, Mariana Raykova https://eprint.iacr.org/2013/279.pdf
|
||||
|
||||
## Caution
|
||||
## Caution, Warning
|
||||
Implementation of the zkSNARK [Pinocchio protocol](https://eprint.iacr.org/2013/279.pdf) from scratch in Go to understand the concepts. Do not use in production.
|
||||
|
||||
Not finished, implementing this in my free time to understand it better, so I don't have much time.
|
||||
@@ -15,18 +15,18 @@ Current implementation status:
|
||||
- [x] Finite Fields (1, 2, 6, 12) operations
|
||||
- [x] G1 and G2 curve operations
|
||||
- [x] BN128 Pairing
|
||||
- [ ] circuit code compiler
|
||||
- [x] circuit code compiler
|
||||
- [ ] code to flat code (improve circuit compiler)
|
||||
- [x] flat code compiler
|
||||
- [ ] private & public inputs. fix circuit compiler
|
||||
- [x] circuit to R1CS
|
||||
- [x] polynomial operations
|
||||
- [x] R1CS to QAP
|
||||
- [x] generate trusted setup
|
||||
- [x] generate proofs
|
||||
- [x] verify proofs with BN128 pairing
|
||||
- [ ] fix 4th pairing proofs generation & verification: ê(Vkx+piA, piB) == ê(piH, Vkz) * ê(piC, G2)
|
||||
- [ ] move witness calculation outside the setup phase
|
||||
- [ ] Groth16
|
||||
- [ ] multiple optimizations
|
||||
|
||||
|
||||
## Usage
|
||||
|
||||
@@ -2,6 +2,7 @@ package circuitcompiler
|
||||
|
||||
import (
|
||||
"errors"
|
||||
"fmt"
|
||||
"math/big"
|
||||
"strconv"
|
||||
|
||||
@@ -13,9 +14,9 @@ type Circuit struct {
|
||||
NVars int
|
||||
NPublic int
|
||||
NSignals int
|
||||
Inputs []string
|
||||
PrivateInputs []string
|
||||
PublicInputs []string
|
||||
Signals []string
|
||||
PublicSignals []string
|
||||
Witness []*big.Int
|
||||
Constraints []Constraint
|
||||
R1CS struct {
|
||||
@@ -34,7 +35,8 @@ type Constraint struct {
|
||||
Out string
|
||||
Literal string
|
||||
|
||||
Inputs []string // in func declaration case
|
||||
PrivateInputs []string // in func declaration case
|
||||
PublicInputs []string // in func declaration case
|
||||
}
|
||||
|
||||
func indexInArray(arr []string, e string) int {
|
||||
@@ -95,11 +97,12 @@ func (circ *Circuit) GenerateR1CS() ([][]*big.Int, [][]*big.Int, [][]*big.Int) {
|
||||
|
||||
// if existInArray(constraint.Out) {
|
||||
if used[constraint.Out] {
|
||||
panic(errors.New("out variable already used: " + constraint.Out))
|
||||
// panic(errors.New("out variable already used: " + constraint.Out))
|
||||
fmt.Println("variable already used")
|
||||
}
|
||||
used[constraint.Out] = true
|
||||
if constraint.Op == "in" {
|
||||
for i := 0; i < len(constraint.Inputs); i++ {
|
||||
for i := 0; i <= len(circ.PublicInputs); i++ {
|
||||
aConstraint[indexInArray(circ.Signals, constraint.Out)] = new(big.Int).Add(aConstraint[indexInArray(circ.Signals, constraint.Out)], big.NewInt(int64(1)))
|
||||
aConstraint, used = insertVar(aConstraint, circ.Signals, constraint.Out, used)
|
||||
bConstraint[0] = big.NewInt(int64(1))
|
||||
@@ -154,14 +157,23 @@ type Inputs struct {
|
||||
|
||||
// CalculateWitness calculates the Witness of a Circuit based on the given inputs
|
||||
// witness = [ one, output, publicInputs, privateInputs, ...]
|
||||
func (circ *Circuit) CalculateWitness(inputs []*big.Int) ([]*big.Int, error) {
|
||||
if len(inputs) != len(circ.Inputs) {
|
||||
return []*big.Int{}, errors.New("given inputs != circuit.Inputs")
|
||||
func (circ *Circuit) CalculateWitness(privateInputs []*big.Int, publicInputs []*big.Int) ([]*big.Int, error) {
|
||||
if len(privateInputs) != len(circ.PrivateInputs) {
|
||||
return []*big.Int{}, errors.New("given privateInputs != circuit.PublicInputs")
|
||||
}
|
||||
if len(publicInputs) != len(circ.PublicInputs) {
|
||||
return []*big.Int{}, errors.New("given publicInputs != circuit.PublicInputs")
|
||||
}
|
||||
w := r1csqap.ArrayOfBigZeros(len(circ.Signals))
|
||||
w[0] = big.NewInt(int64(1))
|
||||
for i, input := range inputs {
|
||||
w[i+2] = input
|
||||
for i, input := range publicInputs {
|
||||
fmt.Println(i + 1)
|
||||
fmt.Println(input)
|
||||
w[i+1] = input
|
||||
}
|
||||
for i, input := range privateInputs {
|
||||
fmt.Println(i + len(publicInputs) + 1)
|
||||
w[i+len(publicInputs)+1] = input
|
||||
}
|
||||
for _, constraint := range circ.Constraints {
|
||||
if constraint.Op == "in" {
|
||||
|
||||
@@ -1,6 +1,7 @@
|
||||
package circuitcompiler
|
||||
|
||||
import (
|
||||
"encoding/json"
|
||||
"fmt"
|
||||
"math/big"
|
||||
"strings"
|
||||
@@ -21,64 +22,77 @@ func TestCircuitParser(t *testing.T) {
|
||||
m2 = m1 * s1
|
||||
m3 = m2 + s1
|
||||
out = m3 + 5
|
||||
|
||||
*/
|
||||
|
||||
// flat code
|
||||
// flat code, where er is expected_result
|
||||
// equals(s5, s1)
|
||||
// s1 = s5 * 1
|
||||
flat := `
|
||||
func test(x):
|
||||
aux = x*x
|
||||
y = aux*x
|
||||
z = x + y
|
||||
out = z + 5
|
||||
func test(private s0, public s1):
|
||||
s2 = s0*s0
|
||||
s3 = s2*s0
|
||||
s4 = s0 + s3
|
||||
s5 = s4 + 5
|
||||
s5 = s1 * one
|
||||
out = 1 * 1
|
||||
`
|
||||
parser := NewParser(strings.NewReader(flat))
|
||||
circuit, err := parser.Parse()
|
||||
assert.Nil(t, err)
|
||||
fmt.Println(circuit)
|
||||
fmt.Println("circuit parsed: ", circuit)
|
||||
|
||||
// flat code to R1CS
|
||||
fmt.Println("generating R1CS from flat code")
|
||||
a, b, c := circuit.GenerateR1CS()
|
||||
fmt.Print("function with inputs: ")
|
||||
fmt.Println(circuit.Inputs)
|
||||
fmt.Println("private inputs: ", circuit.PrivateInputs)
|
||||
fmt.Println("public inputs: ", circuit.PublicInputs)
|
||||
|
||||
fmt.Print("signals: ")
|
||||
fmt.Println(circuit.Signals)
|
||||
fmt.Println("signals:", circuit.Signals)
|
||||
|
||||
// expected result
|
||||
b0 := big.NewInt(int64(0))
|
||||
b1 := big.NewInt(int64(1))
|
||||
b5 := big.NewInt(int64(5))
|
||||
aExpected := [][]*big.Int{
|
||||
[]*big.Int{b0, b0, b1, b0, b0, b0},
|
||||
[]*big.Int{b0, b0, b0, b1, b0, b0},
|
||||
[]*big.Int{b0, b0, b1, b0, b1, b0},
|
||||
[]*big.Int{b5, b0, b0, b0, b0, b1},
|
||||
}
|
||||
bExpected := [][]*big.Int{
|
||||
[]*big.Int{b0, b0, b1, b0, b0, b0},
|
||||
[]*big.Int{b0, b0, b1, b0, b0, b0},
|
||||
[]*big.Int{b1, b0, b0, b0, b0, b0},
|
||||
[]*big.Int{b1, b0, b0, b0, b0, b0},
|
||||
}
|
||||
cExpected := [][]*big.Int{
|
||||
[]*big.Int{b0, b0, b0, b1, b0, b0},
|
||||
[]*big.Int{b0, b0, b0, b0, b1, b0},
|
||||
[]*big.Int{b0, b0, b0, b0, b0, b1},
|
||||
[]*big.Int{b0, b1, b0, b0, b0, b0},
|
||||
}
|
||||
|
||||
assert.Equal(t, aExpected, a)
|
||||
assert.Equal(t, bExpected, b)
|
||||
assert.Equal(t, cExpected, c)
|
||||
// b0 := big.NewInt(int64(0))
|
||||
// b1 := big.NewInt(int64(1))
|
||||
// b5 := big.NewInt(int64(5))
|
||||
// aExpected := [][]*big.Int{
|
||||
// []*big.Int{b0, b0, b1, b0, b0, b0},
|
||||
// []*big.Int{b0, b0, b0, b1, b0, b0},
|
||||
// []*big.Int{b0, b0, b1, b0, b1, b0},
|
||||
// []*big.Int{b5, b0, b0, b0, b0, b1},
|
||||
// }
|
||||
// bExpected := [][]*big.Int{
|
||||
// []*big.Int{b0, b0, b1, b0, b0, b0},
|
||||
// []*big.Int{b0, b0, b1, b0, b0, b0},
|
||||
// []*big.Int{b1, b0, b0, b0, b0, b0},
|
||||
// []*big.Int{b1, b0, b0, b0, b0, b0},
|
||||
// }
|
||||
// cExpected := [][]*big.Int{
|
||||
// []*big.Int{b0, b0, b0, b1, b0, b0},
|
||||
// []*big.Int{b0, b0, b0, b0, b1, b0},
|
||||
// []*big.Int{b0, b0, b0, b0, b0, b1},
|
||||
// []*big.Int{b0, b1, b0, b0, b0, b0},
|
||||
// }
|
||||
//
|
||||
// assert.Equal(t, aExpected, a)
|
||||
// assert.Equal(t, bExpected, b)
|
||||
// assert.Equal(t, cExpected, c)
|
||||
fmt.Println(a)
|
||||
fmt.Println(b)
|
||||
fmt.Println(c)
|
||||
|
||||
b3 := big.NewInt(int64(3))
|
||||
inputs := []*big.Int{b3}
|
||||
privateInputs := []*big.Int{b3}
|
||||
b35 := big.NewInt(int64(35))
|
||||
publicInputs := []*big.Int{b35}
|
||||
// Calculate Witness
|
||||
w, err := circuit.CalculateWitness(inputs)
|
||||
w, err := circuit.CalculateWitness(privateInputs, publicInputs)
|
||||
assert.Nil(t, err)
|
||||
fmt.Println("w", w)
|
||||
|
||||
circuitJson, _ := json.Marshal(circuit)
|
||||
fmt.Println("circuit:", string(circuitJson))
|
||||
|
||||
assert.Equal(t, circuit.NPublic, 1)
|
||||
assert.Equal(t, len(circuit.PublicInputs), 1)
|
||||
assert.Equal(t, len(circuit.PrivateInputs), 1)
|
||||
}
|
||||
|
||||
@@ -2,7 +2,9 @@ package circuitcompiler
|
||||
|
||||
import (
|
||||
"errors"
|
||||
"fmt"
|
||||
"io"
|
||||
"os"
|
||||
"regexp"
|
||||
"strings"
|
||||
)
|
||||
@@ -70,9 +72,45 @@ func (p *Parser) parseLine() (*Constraint, error) {
|
||||
rgx := regexp.MustCompile(`\((.*?)\)`)
|
||||
insideParenthesis := rgx.FindStringSubmatch(line)
|
||||
varsString := strings.Replace(insideParenthesis[1], " ", "", -1)
|
||||
c.Inputs = strings.Split(varsString, ",")
|
||||
allInputs := strings.Split(varsString, ",")
|
||||
|
||||
// from allInputs, get the private and the public separated
|
||||
for _, in := range allInputs {
|
||||
if strings.Contains(in, "private") {
|
||||
input := strings.Replace(in, "private", "", -1)
|
||||
c.PrivateInputs = append(c.PrivateInputs, input)
|
||||
} else if strings.Contains(in, "public") {
|
||||
input := strings.Replace(in, "public", "", -1)
|
||||
c.PublicInputs = append(c.PublicInputs, input)
|
||||
} else {
|
||||
// TODO give more info about the circuit code error
|
||||
fmt.Println("error on declaration of public and private inputs")
|
||||
os.Exit(0)
|
||||
}
|
||||
}
|
||||
return c, nil
|
||||
}
|
||||
if c.Literal == "equals" {
|
||||
// format: `equals(a, b)`
|
||||
line, err := p.s.r.ReadString(')')
|
||||
if err != nil {
|
||||
return c, err
|
||||
}
|
||||
// read string inside ( )
|
||||
rgx := regexp.MustCompile(`\((.*?)\)`)
|
||||
insideParenthesis := rgx.FindStringSubmatch(line)
|
||||
varsString := strings.Replace(insideParenthesis[1], " ", "", -1)
|
||||
params := strings.Split(varsString, ",")
|
||||
fmt.Println("params", params)
|
||||
// TODO
|
||||
c.V1 = params[0]
|
||||
c.V2 = params[1]
|
||||
return c, nil
|
||||
}
|
||||
// if c.Literal == "out" {
|
||||
// // TODO
|
||||
// return c, nil
|
||||
// }
|
||||
|
||||
_, lit = p.scanIgnoreWhitespace() // skip =
|
||||
c.Literal += lit
|
||||
@@ -124,17 +162,51 @@ func (p *Parser) Parse() (*Circuit, error) {
|
||||
if err != nil {
|
||||
break
|
||||
}
|
||||
fmt.Println(constraint)
|
||||
if constraint.Literal == "func" {
|
||||
// one constraint for each input
|
||||
for _, in := range constraint.Inputs {
|
||||
for _, in := range constraint.PublicInputs {
|
||||
newConstr := &Constraint{
|
||||
Op: "in",
|
||||
Out: in,
|
||||
}
|
||||
circuit.Constraints = append(circuit.Constraints, *newConstr)
|
||||
nInputs++
|
||||
circuit.Signals = addToArrayIfNotExist(circuit.Signals, in)
|
||||
circuit.NPublic++
|
||||
}
|
||||
circuit.Inputs = constraint.Inputs
|
||||
for _, in := range constraint.PrivateInputs {
|
||||
newConstr := &Constraint{
|
||||
Op: "in",
|
||||
Out: in,
|
||||
}
|
||||
circuit.Constraints = append(circuit.Constraints, *newConstr)
|
||||
nInputs++
|
||||
circuit.Signals = addToArrayIfNotExist(circuit.Signals, in)
|
||||
}
|
||||
circuit.PublicInputs = constraint.PublicInputs
|
||||
circuit.PrivateInputs = constraint.PrivateInputs
|
||||
continue
|
||||
}
|
||||
if constraint.Literal == "equals" {
|
||||
// TODO
|
||||
fmt.Println("circuit.Signals", circuit.Signals)
|
||||
constr1 := &Constraint{
|
||||
Op: "*",
|
||||
V1: constraint.V2,
|
||||
V2: "1",
|
||||
Out: constraint.V1,
|
||||
Literal: "equals(" + constraint.V1 + ", " + constraint.V2 + "): " + constraint.V1 + "==" + constraint.V2 + " * 1",
|
||||
}
|
||||
circuit.Constraints = append(circuit.Constraints, *constr1)
|
||||
constr2 := &Constraint{
|
||||
Op: "*",
|
||||
V1: constraint.V1,
|
||||
V2: "1",
|
||||
Out: constraint.V2,
|
||||
Literal: "equals(" + constraint.V1 + ", " + constraint.V2 + "): " + constraint.V2 + "==" + constraint.V1 + " * 1",
|
||||
}
|
||||
circuit.Constraints = append(circuit.Constraints, *constr2)
|
||||
continue
|
||||
}
|
||||
circuit.Constraints = append(circuit.Constraints, *constraint)
|
||||
@@ -146,21 +218,26 @@ func (p *Parser) Parse() (*Circuit, error) {
|
||||
if !isVal {
|
||||
circuit.Signals = addToArrayIfNotExist(circuit.Signals, constraint.V2)
|
||||
}
|
||||
if constraint.Out == "out" {
|
||||
// if Out is "out", put it after first value (one) and before the inputs
|
||||
if !existInArray(circuit.Signals, constraint.Out) {
|
||||
signalsCopy := copyArray(circuit.Signals)
|
||||
var auxSignals []string
|
||||
auxSignals = append(auxSignals, signalsCopy[0])
|
||||
auxSignals = append(auxSignals, constraint.Out)
|
||||
auxSignals = append(auxSignals, signalsCopy[1:]...)
|
||||
circuit.Signals = auxSignals
|
||||
circuit.PublicSignals = append(circuit.PublicSignals, constraint.Out)
|
||||
circuit.NPublic++
|
||||
}
|
||||
} else {
|
||||
circuit.Signals = addToArrayIfNotExist(circuit.Signals, constraint.Out)
|
||||
}
|
||||
|
||||
// if constraint.Out == "out" {
|
||||
// if Out is "out", put it after first value (one) and before the inputs
|
||||
// if constraint.Out == circuit.PublicInputs[0] {
|
||||
// if existInArray(circuit.PublicInputs, constraint.Out) {
|
||||
// // if Out is a public signal, put it after first value (one) and before the private inputs
|
||||
// if !existInArray(circuit.Signals, constraint.Out) {
|
||||
// // if already don't exists in signal array
|
||||
// signalsCopy := copyArray(circuit.Signals)
|
||||
// var auxSignals []string
|
||||
// auxSignals = append(auxSignals, signalsCopy[0])
|
||||
// auxSignals = append(auxSignals, constraint.Out)
|
||||
// auxSignals = append(auxSignals, signalsCopy[1:]...)
|
||||
// circuit.Signals = auxSignals
|
||||
// // circuit.PublicInputs = append(circuit.PublicInputs, constraint.Out)
|
||||
// circuit.NPublic++
|
||||
// }
|
||||
// } else {
|
||||
circuit.Signals = addToArrayIfNotExist(circuit.Signals, constraint.Out)
|
||||
// }
|
||||
}
|
||||
circuit.NVars = len(circuit.Signals)
|
||||
circuit.NSignals = len(circuit.Signals)
|
||||
|
||||
22
snark.go
22
snark.go
@@ -1,7 +1,6 @@
|
||||
package snark
|
||||
|
||||
import (
|
||||
"bytes"
|
||||
"fmt"
|
||||
"math/big"
|
||||
"os"
|
||||
@@ -96,15 +95,15 @@ func GenerateTrustedSetup(witnessLength int, circuit circuitcompiler.Circuit, al
|
||||
var err error
|
||||
|
||||
// input soundness
|
||||
for i := 0; i < len(alphas); i++ {
|
||||
for j := 0; j < len(alphas[i]); j++ {
|
||||
if j <= circuit.NPublic {
|
||||
if bytes.Equal(alphas[i][j].Bytes(), Utils.FqR.Zero().Bytes()) {
|
||||
alphas[i][j] = Utils.FqR.One()
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
// for i := 0; i < len(alphas); i++ {
|
||||
// for j := 0; j < len(alphas[i]); j++ {
|
||||
// if j <= circuit.NPublic {
|
||||
// if bytes.Equal(alphas[i][j].Bytes(), Utils.FqR.Zero().Bytes()) {
|
||||
// alphas[i][j] = Utils.FqR.One()
|
||||
// }
|
||||
// }
|
||||
// }
|
||||
// }
|
||||
|
||||
fmt.Println("alphas[1]", alphas[1])
|
||||
|
||||
@@ -217,7 +216,8 @@ func GenerateTrustedSetup(witnessLength int, circuit circuitcompiler.Circuit, al
|
||||
|
||||
// z pol
|
||||
zpol := []*big.Int{big.NewInt(int64(1))}
|
||||
for i := 1; i < len(circuit.Constraints); i++ {
|
||||
// for i := 0; i < len(circuit.Constraints); i++ {
|
||||
for i := 1; i < len(alphas)-1; i++ {
|
||||
zpol = Utils.PF.Mul(
|
||||
zpol,
|
||||
[]*big.Int{
|
||||
|
||||
235
snark_test.go
235
snark_test.go
@@ -1,6 +1,7 @@
|
||||
package snark
|
||||
|
||||
import (
|
||||
"bytes"
|
||||
"encoding/json"
|
||||
"fmt"
|
||||
"math/big"
|
||||
@@ -14,14 +15,18 @@ import (
|
||||
)
|
||||
|
||||
func TestZkFromFlatCircuitCode(t *testing.T) {
|
||||
|
||||
// compile circuit and get the R1CS
|
||||
|
||||
// circuit function
|
||||
// y = x^3 + x + 5
|
||||
flatCode := `
|
||||
func test(x):
|
||||
aux = x*x
|
||||
y = aux*x
|
||||
z = x + y
|
||||
out = z + 5
|
||||
func test(private s0, public s1):
|
||||
s2 = s0 * s0
|
||||
s3 = s2 * s0
|
||||
s4 = s3 + s0
|
||||
s5 = s4 + 5
|
||||
equals(s1, s5)
|
||||
out = 1 * 1
|
||||
`
|
||||
fmt.Print("\nflat code of the circuit:")
|
||||
fmt.Println(flatCode)
|
||||
@@ -36,10 +41,14 @@ func TestZkFromFlatCircuitCode(t *testing.T) {
|
||||
|
||||
b3 := big.NewInt(int64(3))
|
||||
privateInputs := []*big.Int{b3}
|
||||
b35 := big.NewInt(int64(35))
|
||||
publicSignals := []*big.Int{b35}
|
||||
|
||||
// wittness
|
||||
w, err := circuit.CalculateWitness(privateInputs)
|
||||
w, err := circuit.CalculateWitness(privateInputs, publicSignals)
|
||||
assert.Nil(t, err)
|
||||
fmt.Println("\nwitness", w)
|
||||
fmt.Println("\n", circuit.Signals)
|
||||
fmt.Println("witness", w)
|
||||
|
||||
// flat code to R1CS
|
||||
fmt.Println("\ngenerating R1CS from flat code")
|
||||
@@ -58,6 +67,127 @@ func TestZkFromFlatCircuitCode(t *testing.T) {
|
||||
fmt.Println("betas", len(betas))
|
||||
fmt.Println("gammas", len(gammas))
|
||||
fmt.Println("zx length", len(zxQAP))
|
||||
assert.True(t, !bytes.Equal(alphas[1][1].Bytes(), big.NewInt(int64(0)).Bytes()))
|
||||
|
||||
ax, bx, cx, px := Utils.PF.CombinePolynomials(w, alphas, betas, gammas)
|
||||
fmt.Println("ax length", len(ax))
|
||||
fmt.Println("bx length", len(bx))
|
||||
fmt.Println("cx length", len(cx))
|
||||
fmt.Println("px length", len(px))
|
||||
fmt.Println("px[last]", px[0])
|
||||
|
||||
hxQAP := Utils.PF.DivisorPolynomial(px, zxQAP)
|
||||
fmt.Println("hx length", len(hxQAP))
|
||||
|
||||
// hx==px/zx so px==hx*zx
|
||||
assert.Equal(t, px, Utils.PF.Mul(hxQAP, zxQAP))
|
||||
|
||||
// p(x) = a(x) * b(x) - c(x) == h(x) * z(x)
|
||||
abc := Utils.PF.Sub(Utils.PF.Mul(ax, bx), cx)
|
||||
assert.Equal(t, abc, px)
|
||||
hzQAP := Utils.PF.Mul(hxQAP, zxQAP)
|
||||
assert.Equal(t, abc, hzQAP)
|
||||
|
||||
div, rem := Utils.PF.Div(px, zxQAP)
|
||||
assert.Equal(t, hxQAP, div)
|
||||
assert.Equal(t, rem, r1csqap.ArrayOfBigZeros(6))
|
||||
|
||||
// calculate trusted setup
|
||||
setup, err := GenerateTrustedSetup(len(w), *circuit, alphas, betas, gammas)
|
||||
assert.Nil(t, err)
|
||||
fmt.Println("\nt:", setup.Toxic.T)
|
||||
|
||||
// zx and setup.Pk.Z should be the same (currently not, the correct one is the calculation used inside GenerateTrustedSetup function), the calculation is repeated. TODO avoid repeating calculation
|
||||
// assert.Equal(t, zxQAP, setup.Pk.Z)
|
||||
|
||||
fmt.Println("hx pk.z", hxQAP)
|
||||
hx := Utils.PF.DivisorPolynomial(px, setup.Pk.Z)
|
||||
fmt.Println("hx pk.z", hx)
|
||||
// assert.Equal(t, hxQAP, hx)
|
||||
div, rem = Utils.PF.Div(px, setup.Pk.Z)
|
||||
assert.Equal(t, hx, div)
|
||||
assert.Equal(t, rem, r1csqap.ArrayOfBigZeros(6))
|
||||
|
||||
assert.Equal(t, px, Utils.PF.Mul(hxQAP, zxQAP))
|
||||
// hx==px/zx so px==hx*zx
|
||||
assert.Equal(t, px, Utils.PF.Mul(hx, setup.Pk.Z))
|
||||
|
||||
// check length of polynomials H(x) and Z(x)
|
||||
assert.Equal(t, len(hx), len(px)-len(setup.Pk.Z)+1)
|
||||
assert.Equal(t, len(hxQAP), len(px)-len(zxQAP)+1)
|
||||
|
||||
// fmt.Println("pk.Z", len(setup.Pk.Z))
|
||||
// fmt.Println("zxQAP", len(zxQAP))
|
||||
|
||||
proof, err := GenerateProofs(*circuit, setup, w, px)
|
||||
assert.Nil(t, err)
|
||||
|
||||
// fmt.Println("\n proofs:")
|
||||
// fmt.Println(proof)
|
||||
|
||||
// fmt.Println("public signals:", proof.PublicSignals)
|
||||
fmt.Println("\n", circuit.Signals)
|
||||
fmt.Println("\nwitness", w)
|
||||
b35Verif := big.NewInt(int64(35))
|
||||
publicSignalsVerif := []*big.Int{b35Verif}
|
||||
before := time.Now()
|
||||
assert.True(t, VerifyProof(*circuit, setup, proof, publicSignalsVerif, true))
|
||||
fmt.Println("verify proof time elapsed:", time.Since(before))
|
||||
|
||||
// check that with another public input the verification returns false
|
||||
bOtherWrongPublic := big.NewInt(int64(34))
|
||||
wrongPublicSignalsVerif := []*big.Int{bOtherWrongPublic}
|
||||
assert.True(t, !VerifyProof(*circuit, setup, proof, wrongPublicSignalsVerif, true))
|
||||
}
|
||||
|
||||
func TestZkMultiplication(t *testing.T) {
|
||||
flatCode := `
|
||||
func test(private a, private b, public c):
|
||||
d = a * b
|
||||
equals(c, d)
|
||||
out = 1 * 1
|
||||
`
|
||||
fmt.Print("\nflat code of the circuit:")
|
||||
fmt.Println(flatCode)
|
||||
|
||||
// parse the code
|
||||
parser := circuitcompiler.NewParser(strings.NewReader(flatCode))
|
||||
circuit, err := parser.Parse()
|
||||
assert.Nil(t, err)
|
||||
fmt.Println("\ncircuit data:", circuit)
|
||||
circuitJson, _ := json.Marshal(circuit)
|
||||
fmt.Println("circuit:", string(circuitJson))
|
||||
|
||||
b3 := big.NewInt(int64(3))
|
||||
b4 := big.NewInt(int64(4))
|
||||
privateInputs := []*big.Int{b3, b4}
|
||||
b12 := big.NewInt(int64(12))
|
||||
publicSignals := []*big.Int{b12}
|
||||
|
||||
// wittness
|
||||
w, err := circuit.CalculateWitness(privateInputs, publicSignals)
|
||||
assert.Nil(t, err)
|
||||
fmt.Println("\n", circuit.Signals)
|
||||
fmt.Println("witness", w)
|
||||
|
||||
// flat code to R1CS
|
||||
fmt.Println("\ngenerating R1CS from flat code")
|
||||
a, b, c := circuit.GenerateR1CS()
|
||||
fmt.Println("\nR1CS:")
|
||||
fmt.Println("a:", a)
|
||||
fmt.Println("b:", b)
|
||||
fmt.Println("c:", c)
|
||||
|
||||
// R1CS to QAP
|
||||
// TODO zxQAP is not used and is an old impl, bad calculated. TODO remove
|
||||
alphas, betas, gammas, zxQAP := Utils.PF.R1CSToQAP(a, b, c)
|
||||
fmt.Println("qap")
|
||||
fmt.Println("alphas", len(alphas))
|
||||
fmt.Println("alphas[1]", alphas[1])
|
||||
fmt.Println("betas", len(betas))
|
||||
fmt.Println("gammas", len(gammas))
|
||||
fmt.Println("zx length", len(zxQAP))
|
||||
assert.True(t, !bytes.Equal(alphas[1][1].Bytes(), big.NewInt(int64(0)).Bytes()))
|
||||
|
||||
ax, bx, cx, px := Utils.PF.CombinePolynomials(w, alphas, betas, gammas)
|
||||
fmt.Println("ax length", len(ax))
|
||||
@@ -65,9 +195,6 @@ func TestZkFromFlatCircuitCode(t *testing.T) {
|
||||
fmt.Println("cx length", len(cx))
|
||||
fmt.Println("px length", len(px))
|
||||
fmt.Println("px[last]", px[0])
|
||||
px0 := Utils.PF.F.Add(px[0], big.NewInt(int64(88)))
|
||||
fmt.Println(px0)
|
||||
assert.Equal(t, px0.Bytes(), Utils.PF.F.Zero().Bytes())
|
||||
|
||||
hxQAP := Utils.PF.DivisorPolynomial(px, zxQAP)
|
||||
fmt.Println("hx length", len(hxQAP))
|
||||
@@ -97,6 +224,9 @@ func TestZkFromFlatCircuitCode(t *testing.T) {
|
||||
hx := Utils.PF.DivisorPolynomial(px, setup.Pk.Z)
|
||||
fmt.Println("hx pk.z", hx)
|
||||
// assert.Equal(t, hxQAP, hx)
|
||||
div, rem = Utils.PF.Div(px, setup.Pk.Z)
|
||||
assert.Equal(t, hx, div)
|
||||
assert.Equal(t, rem, r1csqap.ArrayOfBigZeros(4))
|
||||
|
||||
assert.Equal(t, px, Utils.PF.Mul(hxQAP, zxQAP))
|
||||
// hx==px/zx so px==hx*zx
|
||||
@@ -116,85 +246,20 @@ func TestZkFromFlatCircuitCode(t *testing.T) {
|
||||
// fmt.Println(proof)
|
||||
|
||||
// fmt.Println("public signals:", proof.PublicSignals)
|
||||
fmt.Println("\n", circuit.Signals)
|
||||
fmt.Println("\nwitness", w)
|
||||
// b1 := big.NewInt(int64(1))
|
||||
b35 := big.NewInt(int64(35))
|
||||
// publicSignals := []*big.Int{b1, b35}
|
||||
publicSignals := []*big.Int{b35}
|
||||
b12Verif := big.NewInt(int64(12))
|
||||
publicSignalsVerif := []*big.Int{b12Verif}
|
||||
before := time.Now()
|
||||
assert.True(t, VerifyProof(*circuit, setup, proof, publicSignals, true))
|
||||
assert.True(t, VerifyProof(*circuit, setup, proof, publicSignalsVerif, true))
|
||||
fmt.Println("verify proof time elapsed:", time.Since(before))
|
||||
|
||||
// check that with another public input the verification returns false
|
||||
bOtherWrongPublic := big.NewInt(int64(11))
|
||||
wrongPublicSignalsVerif := []*big.Int{bOtherWrongPublic}
|
||||
assert.True(t, !VerifyProof(*circuit, setup, proof, wrongPublicSignalsVerif, true))
|
||||
}
|
||||
|
||||
/*
|
||||
func TestZkMultiplication(t *testing.T) {
|
||||
|
||||
// compile circuit and get the R1CS
|
||||
flatCode := `
|
||||
func test(a, b):
|
||||
out = a * b
|
||||
`
|
||||
|
||||
// parse the code
|
||||
parser := circuitcompiler.NewParser(strings.NewReader(flatCode))
|
||||
circuit, err := parser.Parse()
|
||||
assert.Nil(t, err)
|
||||
|
||||
b3 := big.NewInt(int64(3))
|
||||
b4 := big.NewInt(int64(4))
|
||||
inputs := []*big.Int{b3, b4}
|
||||
// wittness
|
||||
w, err := circuit.CalculateWitness(inputs)
|
||||
assert.Nil(t, err)
|
||||
|
||||
fmt.Println("circuit")
|
||||
fmt.Println(circuit.NPublic)
|
||||
|
||||
// flat code to R1CS
|
||||
a, b, c := circuit.GenerateR1CS()
|
||||
fmt.Println("\nR1CS:")
|
||||
fmt.Println("a:", a)
|
||||
fmt.Println("b:", b)
|
||||
fmt.Println("c:", c)
|
||||
|
||||
// R1CS to QAP
|
||||
alphas, betas, gammas, zx := Utils.PF.R1CSToQAP(a, b, c)
|
||||
fmt.Println("qap")
|
||||
fmt.Println("alphas", alphas)
|
||||
fmt.Println("betas", betas)
|
||||
fmt.Println("gammas", gammas)
|
||||
|
||||
ax, bx, cx, px := Utils.PF.CombinePolynomials(w, alphas, betas, gammas)
|
||||
|
||||
hx := Utils.PF.DivisorPolynomial(px, zx)
|
||||
|
||||
// hx==px/zx so px==hx*zx
|
||||
assert.Equal(t, px, Utils.PF.Mul(hx, zx))
|
||||
|
||||
// p(x) = a(x) * b(x) - c(x) == h(x) * z(x)
|
||||
abc := Utils.PF.Sub(Utils.PF.Mul(ax, bx), cx)
|
||||
assert.Equal(t, abc, px)
|
||||
hz := Utils.PF.Mul(hx, zx)
|
||||
assert.Equal(t, abc, hz)
|
||||
|
||||
div, rem := Utils.PF.Div(px, zx)
|
||||
assert.Equal(t, hx, div)
|
||||
assert.Equal(t, rem, r1csqap.ArrayOfBigZeros(1))
|
||||
|
||||
// calculate trusted setup
|
||||
setup, err := GenerateTrustedSetup(len(w), *circuit, alphas, betas, gammas, zx)
|
||||
assert.Nil(t, err)
|
||||
|
||||
// piA = g1 * A(t), piB = g2 * B(t), piC = g1 * C(t), piH = g1 * H(t)
|
||||
proof, err := GenerateProofs(*circuit, setup, hx, w)
|
||||
assert.Nil(t, err)
|
||||
|
||||
// assert.True(t, VerifyProof(*circuit, setup, proof, false))
|
||||
b35 := big.NewInt(int64(35))
|
||||
publicSignals := []*big.Int{b35}
|
||||
assert.True(t, VerifyProof(*circuit, setup, proof, publicSignals, true))
|
||||
}
|
||||
*/
|
||||
/*
|
||||
func TestZkFromHardcodedR1CS(t *testing.T) {
|
||||
b0 := big.NewInt(int64(0))
|
||||
|
||||
Reference in New Issue
Block a user