Browse Source

add circuit compiler equals(a, b) syntax, complete flow working well (from compiler to verification)

pull/5/head
arnaucube 5 years ago
parent
commit
b379981087
3 changed files with 123 additions and 58 deletions
  1. +2
    -4
      README.md
  2. +39
    -23
      circuitcompiler/parser.go
  3. +82
    -31
      snark_test.go

+ 2
- 4
README.md

@ -6,7 +6,7 @@ zkSNARK library implementation in Go
- `Succinct Non-Interactive Zero Knowledge for a von Neumann Architecture`, Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, Madars Virza https://eprint.iacr.org/2013/879.pdf - `Succinct Non-Interactive Zero Knowledge for a von Neumann Architecture`, Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, Madars Virza https://eprint.iacr.org/2013/879.pdf
- `Pinocchio: Nearly practical verifiable computation`, Bryan Parno, Craig Gentry, Jon Howell, Mariana Raykova https://eprint.iacr.org/2013/279.pdf - `Pinocchio: Nearly practical verifiable computation`, Bryan Parno, Craig Gentry, Jon Howell, Mariana Raykova https://eprint.iacr.org/2013/279.pdf
## Caution, Warning, etc
## Caution, Warning
Implementation of the zkSNARK [Pinocchio protocol](https://eprint.iacr.org/2013/279.pdf) from scratch in Go to understand the concepts. Do not use in production. Implementation of the zkSNARK [Pinocchio protocol](https://eprint.iacr.org/2013/279.pdf) from scratch in Go to understand the concepts. Do not use in production.
Not finished, implementing this in my free time to understand it better, so I don't have much time. Not finished, implementing this in my free time to understand it better, so I don't have much time.
@ -15,17 +15,15 @@ Current implementation status:
- [x] Finite Fields (1, 2, 6, 12) operations - [x] Finite Fields (1, 2, 6, 12) operations
- [x] G1 and G2 curve operations - [x] G1 and G2 curve operations
- [x] BN128 Pairing - [x] BN128 Pairing
- [ ] circuit code compiler
- [x] circuit code compiler
- [ ] code to flat code (improve circuit compiler) - [ ] code to flat code (improve circuit compiler)
- [x] flat code compiler - [x] flat code compiler
- [ ] private & public inputs. fix circuit compiler
- [x] circuit to R1CS - [x] circuit to R1CS
- [x] polynomial operations - [x] polynomial operations
- [x] R1CS to QAP - [x] R1CS to QAP
- [x] generate trusted setup - [x] generate trusted setup
- [x] generate proofs - [x] generate proofs
- [x] verify proofs with BN128 pairing - [x] verify proofs with BN128 pairing
- [ ] fix 4th pairing proofs generation & verification: ê(Vkx+piA, piB) == ê(piH, Vkz) * ê(piC, G2)
- [ ] move witness calculation outside the setup phase - [ ] move witness calculation outside the setup phase
- [ ] Groth16 - [ ] Groth16
- [ ] multiple optimizations - [ ] multiple optimizations

+ 39
- 23
circuitcompiler/parser.go

@ -103,6 +103,8 @@ func (p *Parser) parseLine() (*Constraint, error) {
params := strings.Split(varsString, ",") params := strings.Split(varsString, ",")
fmt.Println("params", params) fmt.Println("params", params)
// TODO // TODO
c.V1 = params[0]
c.V2 = params[1]
return c, nil return c, nil
} }
// if c.Literal == "out" { // if c.Literal == "out" {
@ -163,21 +165,24 @@ func (p *Parser) Parse() (*Circuit, error) {
fmt.Println(constraint) fmt.Println(constraint)
if constraint.Literal == "func" { if constraint.Literal == "func" {
// one constraint for each input // one constraint for each input
for _, in := range constraint.PrivateInputs {
for _, in := range constraint.PublicInputs {
newConstr := &Constraint{ newConstr := &Constraint{
Op: "in", Op: "in",
Out: in, Out: in,
} }
circuit.Constraints = append(circuit.Constraints, *newConstr) circuit.Constraints = append(circuit.Constraints, *newConstr)
nInputs++ nInputs++
circuit.Signals = addToArrayIfNotExist(circuit.Signals, in)
circuit.NPublic++
} }
for _, in := range constraint.PublicInputs {
for _, in := range constraint.PrivateInputs {
newConstr := &Constraint{ newConstr := &Constraint{
Op: "in", Op: "in",
Out: in, Out: in,
} }
circuit.Constraints = append(circuit.Constraints, *newConstr) circuit.Constraints = append(circuit.Constraints, *newConstr)
nInputs++ nInputs++
circuit.Signals = addToArrayIfNotExist(circuit.Signals, in)
} }
circuit.PublicInputs = constraint.PublicInputs circuit.PublicInputs = constraint.PublicInputs
circuit.PrivateInputs = constraint.PrivateInputs circuit.PrivateInputs = constraint.PrivateInputs
@ -186,6 +191,22 @@ func (p *Parser) Parse() (*Circuit, error) {
if constraint.Literal == "equals" { if constraint.Literal == "equals" {
// TODO // TODO
fmt.Println("circuit.Signals", circuit.Signals) fmt.Println("circuit.Signals", circuit.Signals)
constr1 := &Constraint{
Op: "*",
V1: constraint.V2,
V2: "1",
Out: constraint.V1,
Literal: "equals(" + constraint.V1 + ", " + constraint.V2 + "): " + constraint.V1 + "==" + constraint.V2 + " * 1",
}
circuit.Constraints = append(circuit.Constraints, *constr1)
constr2 := &Constraint{
Op: "*",
V1: constraint.V1,
V2: "1",
Out: constraint.V2,
Literal: "equals(" + constraint.V1 + ", " + constraint.V2 + "): " + constraint.V2 + "==" + constraint.V1 + " * 1",
}
circuit.Constraints = append(circuit.Constraints, *constr2)
continue continue
} }
circuit.Constraints = append(circuit.Constraints, *constraint) circuit.Constraints = append(circuit.Constraints, *constraint)
@ -197,31 +218,26 @@ func (p *Parser) Parse() (*Circuit, error) {
if !isVal { if !isVal {
circuit.Signals = addToArrayIfNotExist(circuit.Signals, constraint.V2) circuit.Signals = addToArrayIfNotExist(circuit.Signals, constraint.V2)
} }
// fmt.Println("---")
// fmt.Println(circuit.PublicInputs[0])
// fmt.Println(constraint.Out)
// fmt.Println(constraint.Out == circuit.PublicInputs[0])
// fmt.Println("---")
// if constraint.Out == "out" { // if constraint.Out == "out" {
// if Out is "out", put it after first value (one) and before the inputs // if Out is "out", put it after first value (one) and before the inputs
// if constraint.Out == circuit.PublicInputs[0] { // if constraint.Out == circuit.PublicInputs[0] {
if existInArray(circuit.PublicInputs, constraint.Out) {
// if Out is a public signal, put it after first value (one) and before the private inputs
if !existInArray(circuit.Signals, constraint.Out) {
// if already don't exists in signal array
signalsCopy := copyArray(circuit.Signals)
var auxSignals []string
auxSignals = append(auxSignals, signalsCopy[0])
auxSignals = append(auxSignals, constraint.Out)
auxSignals = append(auxSignals, signalsCopy[1:]...)
circuit.Signals = auxSignals
// circuit.PublicInputs = append(circuit.PublicInputs, constraint.Out)
circuit.NPublic++
}
} else {
circuit.Signals = addToArrayIfNotExist(circuit.Signals, constraint.Out)
}
// if existInArray(circuit.PublicInputs, constraint.Out) {
// // if Out is a public signal, put it after first value (one) and before the private inputs
// if !existInArray(circuit.Signals, constraint.Out) {
// // if already don't exists in signal array
// signalsCopy := copyArray(circuit.Signals)
// var auxSignals []string
// auxSignals = append(auxSignals, signalsCopy[0])
// auxSignals = append(auxSignals, constraint.Out)
// auxSignals = append(auxSignals, signalsCopy[1:]...)
// circuit.Signals = auxSignals
// // circuit.PublicInputs = append(circuit.PublicInputs, constraint.Out)
// circuit.NPublic++
// }
// } else {
circuit.Signals = addToArrayIfNotExist(circuit.Signals, constraint.Out)
// }
} }
circuit.NVars = len(circuit.Signals) circuit.NVars = len(circuit.Signals)
circuit.NSignals = len(circuit.Signals) circuit.NSignals = len(circuit.Signals)

+ 82
- 31
snark_test.go

@ -25,8 +25,7 @@ func TestZkFromFlatCircuitCode(t *testing.T) {
s3 = s2 * s0 s3 = s2 * s0
s4 = s3 + s0 s4 = s3 + s0
s5 = s4 + 5 s5 = s4 + 5
s1 = s5 * 1
s5 = s1 * 1
equals(s1, s5)
out = 1 * 1 out = 1 * 1
` `
fmt.Print("\nflat code of the circuit:") fmt.Print("\nflat code of the circuit:")
@ -127,6 +126,7 @@ func TestZkFromFlatCircuitCode(t *testing.T) {
// fmt.Println(proof) // fmt.Println(proof)
// fmt.Println("public signals:", proof.PublicSignals) // fmt.Println("public signals:", proof.PublicSignals)
fmt.Println("\n", circuit.Signals)
fmt.Println("\nwitness", w) fmt.Println("\nwitness", w)
b35Verif := big.NewInt(int64(35)) b35Verif := big.NewInt(int64(35))
publicSignalsVerif := []*big.Int{b35Verif} publicSignalsVerif := []*big.Int{b35Verif}
@ -140,31 +140,38 @@ func TestZkFromFlatCircuitCode(t *testing.T) {
assert.True(t, !VerifyProof(*circuit, setup, proof, wrongPublicSignalsVerif, true)) assert.True(t, !VerifyProof(*circuit, setup, proof, wrongPublicSignalsVerif, true))
} }
/*
func TestZkMultiplication(t *testing.T) { func TestZkMultiplication(t *testing.T) {
// compile circuit and get the R1CS
flatCode := ` flatCode := `
func test(a, b):
out = a * b
func test(private a, private b, public c):
d = a * b
equals(c, d)
out = 1 * 1
` `
fmt.Print("\nflat code of the circuit:")
fmt.Println(flatCode)
// parse the code // parse the code
parser := circuitcompiler.NewParser(strings.NewReader(flatCode)) parser := circuitcompiler.NewParser(strings.NewReader(flatCode))
circuit, err := parser.Parse() circuit, err := parser.Parse()
assert.Nil(t, err) assert.Nil(t, err)
fmt.Println("\ncircuit data:", circuit)
circuitJson, _ := json.Marshal(circuit)
fmt.Println("circuit:", string(circuitJson))
b3 := big.NewInt(int64(3)) b3 := big.NewInt(int64(3))
b4 := big.NewInt(int64(4)) b4 := big.NewInt(int64(4))
inputs := []*big.Int{b3, b4}
privateInputs := []*big.Int{b3, b4}
b12 := big.NewInt(int64(12))
publicSignals := []*big.Int{b12}
// wittness // wittness
w, err := circuit.CalculateWitness(inputs)
w, err := circuit.CalculateWitness(privateInputs, publicSignals)
assert.Nil(t, err) assert.Nil(t, err)
fmt.Println("circuit")
fmt.Println(circuit.NPublic)
fmt.Println("\n", circuit.Signals)
fmt.Println("witness", w)
// flat code to R1CS // flat code to R1CS
fmt.Println("\ngenerating R1CS from flat code")
a, b, c := circuit.GenerateR1CS() a, b, c := circuit.GenerateR1CS()
fmt.Println("\nR1CS:") fmt.Println("\nR1CS:")
fmt.Println("a:", a) fmt.Println("a:", a)
@ -172,43 +179,87 @@ func TestZkMultiplication(t *testing.T) {
fmt.Println("c:", c) fmt.Println("c:", c)
// R1CS to QAP // R1CS to QAP
alphas, betas, gammas, zx := Utils.PF.R1CSToQAP(a, b, c)
// TODO zxQAP is not used and is an old impl, bad calculated. TODO remove
alphas, betas, gammas, zxQAP := Utils.PF.R1CSToQAP(a, b, c)
fmt.Println("qap") fmt.Println("qap")
fmt.Println("alphas", alphas)
fmt.Println("betas", betas)
fmt.Println("gammas", gammas)
fmt.Println("alphas", len(alphas))
fmt.Println("alphas[1]", alphas[1])
fmt.Println("betas", len(betas))
fmt.Println("gammas", len(gammas))
fmt.Println("zx length", len(zxQAP))
assert.True(t, !bytes.Equal(alphas[1][1].Bytes(), big.NewInt(int64(0)).Bytes()))
ax, bx, cx, px := Utils.PF.CombinePolynomials(w, alphas, betas, gammas) ax, bx, cx, px := Utils.PF.CombinePolynomials(w, alphas, betas, gammas)
fmt.Println("ax length", len(ax))
fmt.Println("bx length", len(bx))
fmt.Println("cx length", len(cx))
fmt.Println("px length", len(px))
fmt.Println("px[last]", px[0])
hx := Utils.PF.DivisorPolynomial(px, zx)
hxQAP := Utils.PF.DivisorPolynomial(px, zxQAP)
fmt.Println("hx length", len(hxQAP))
// hx==px/zx so px==hx*zx // hx==px/zx so px==hx*zx
assert.Equal(t, px, Utils.PF.Mul(hx, zx))
assert.Equal(t, px, Utils.PF.Mul(hxQAP, zxQAP))
// p(x) = a(x) * b(x) - c(x) == h(x) * z(x) // p(x) = a(x) * b(x) - c(x) == h(x) * z(x)
abc := Utils.PF.Sub(Utils.PF.Mul(ax, bx), cx) abc := Utils.PF.Sub(Utils.PF.Mul(ax, bx), cx)
assert.Equal(t, abc, px) assert.Equal(t, abc, px)
hz := Utils.PF.Mul(hx, zx)
assert.Equal(t, abc, hz)
hzQAP := Utils.PF.Mul(hxQAP, zxQAP)
assert.Equal(t, abc, hzQAP)
div, rem := Utils.PF.Div(px, zx)
assert.Equal(t, hx, div)
assert.Equal(t, rem, r1csqap.ArrayOfBigZeros(1))
div, rem := Utils.PF.Div(px, zxQAP)
assert.Equal(t, hxQAP, div)
assert.Equal(t, rem, r1csqap.ArrayOfBigZeros(4))
// calculate trusted setup // calculate trusted setup
setup, err := GenerateTrustedSetup(len(w), *circuit, alphas, betas, gammas, zx)
setup, err := GenerateTrustedSetup(len(w), *circuit, alphas, betas, gammas)
assert.Nil(t, err) assert.Nil(t, err)
fmt.Println("\nt:", setup.Toxic.T)
// piA = g1 * A(t), piB = g2 * B(t), piC = g1 * C(t), piH = g1 * H(t)
proof, err := GenerateProofs(*circuit, setup, hx, w)
// zx and setup.Pk.Z should be the same (currently not, the correct one is the calculation used inside GenerateTrustedSetup function), the calculation is repeated. TODO avoid repeating calculation
// assert.Equal(t, zxQAP, setup.Pk.Z)
fmt.Println("hx pk.z", hxQAP)
hx := Utils.PF.DivisorPolynomial(px, setup.Pk.Z)
fmt.Println("hx pk.z", hx)
// assert.Equal(t, hxQAP, hx)
div, rem = Utils.PF.Div(px, setup.Pk.Z)
assert.Equal(t, hx, div)
assert.Equal(t, rem, r1csqap.ArrayOfBigZeros(4))
assert.Equal(t, px, Utils.PF.Mul(hxQAP, zxQAP))
// hx==px/zx so px==hx*zx
assert.Equal(t, px, Utils.PF.Mul(hx, setup.Pk.Z))
// check length of polynomials H(x) and Z(x)
assert.Equal(t, len(hx), len(px)-len(setup.Pk.Z)+1)
assert.Equal(t, len(hxQAP), len(px)-len(zxQAP)+1)
// fmt.Println("pk.Z", len(setup.Pk.Z))
// fmt.Println("zxQAP", len(zxQAP))
proof, err := GenerateProofs(*circuit, setup, w, px)
assert.Nil(t, err) assert.Nil(t, err)
// assert.True(t, VerifyProof(*circuit, setup, proof, false))
b35 := big.NewInt(int64(35))
publicSignals := []*big.Int{b35}
assert.True(t, VerifyProof(*circuit, setup, proof, publicSignals, true))
// fmt.Println("\n proofs:")
// fmt.Println(proof)
// fmt.Println("public signals:", proof.PublicSignals)
fmt.Println("\n", circuit.Signals)
fmt.Println("\nwitness", w)
b12Verif := big.NewInt(int64(12))
publicSignalsVerif := []*big.Int{b12Verif}
before := time.Now()
assert.True(t, VerifyProof(*circuit, setup, proof, publicSignalsVerif, true))
fmt.Println("verify proof time elapsed:", time.Since(before))
// check that with another public input the verification returns false
bOtherWrongPublic := big.NewInt(int64(11))
wrongPublicSignalsVerif := []*big.Int{bOtherWrongPublic}
assert.True(t, !VerifyProof(*circuit, setup, proof, wrongPublicSignalsVerif, true))
} }
*/
/* /*
func TestZkFromHardcodedR1CS(t *testing.T) { func TestZkFromHardcodedR1CS(t *testing.T) {
b0 := big.NewInt(int64(0)) b0 := big.NewInt(int64(0))

Loading…
Cancel
Save