mirror of
https://github.com/arnaucube/go-snark-study.git
synced 2026-02-02 17:26:41 +01:00
add circuit compiler equals(a, b) syntax, complete flow working well (from compiler to verification)
This commit is contained in:
@@ -6,7 +6,7 @@ zkSNARK library implementation in Go
|
||||
- `Succinct Non-Interactive Zero Knowledge for a von Neumann Architecture`, Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, Madars Virza https://eprint.iacr.org/2013/879.pdf
|
||||
- `Pinocchio: Nearly practical verifiable computation`, Bryan Parno, Craig Gentry, Jon Howell, Mariana Raykova https://eprint.iacr.org/2013/279.pdf
|
||||
|
||||
## Caution, Warning, etc
|
||||
## Caution, Warning
|
||||
Implementation of the zkSNARK [Pinocchio protocol](https://eprint.iacr.org/2013/279.pdf) from scratch in Go to understand the concepts. Do not use in production.
|
||||
|
||||
Not finished, implementing this in my free time to understand it better, so I don't have much time.
|
||||
@@ -15,17 +15,15 @@ Current implementation status:
|
||||
- [x] Finite Fields (1, 2, 6, 12) operations
|
||||
- [x] G1 and G2 curve operations
|
||||
- [x] BN128 Pairing
|
||||
- [ ] circuit code compiler
|
||||
- [x] circuit code compiler
|
||||
- [ ] code to flat code (improve circuit compiler)
|
||||
- [x] flat code compiler
|
||||
- [ ] private & public inputs. fix circuit compiler
|
||||
- [x] circuit to R1CS
|
||||
- [x] polynomial operations
|
||||
- [x] R1CS to QAP
|
||||
- [x] generate trusted setup
|
||||
- [x] generate proofs
|
||||
- [x] verify proofs with BN128 pairing
|
||||
- [ ] fix 4th pairing proofs generation & verification: ê(Vkx+piA, piB) == ê(piH, Vkz) * ê(piC, G2)
|
||||
- [ ] move witness calculation outside the setup phase
|
||||
- [ ] Groth16
|
||||
- [ ] multiple optimizations
|
||||
|
||||
@@ -103,6 +103,8 @@ func (p *Parser) parseLine() (*Constraint, error) {
|
||||
params := strings.Split(varsString, ",")
|
||||
fmt.Println("params", params)
|
||||
// TODO
|
||||
c.V1 = params[0]
|
||||
c.V2 = params[1]
|
||||
return c, nil
|
||||
}
|
||||
// if c.Literal == "out" {
|
||||
@@ -163,14 +165,6 @@ func (p *Parser) Parse() (*Circuit, error) {
|
||||
fmt.Println(constraint)
|
||||
if constraint.Literal == "func" {
|
||||
// one constraint for each input
|
||||
for _, in := range constraint.PrivateInputs {
|
||||
newConstr := &Constraint{
|
||||
Op: "in",
|
||||
Out: in,
|
||||
}
|
||||
circuit.Constraints = append(circuit.Constraints, *newConstr)
|
||||
nInputs++
|
||||
}
|
||||
for _, in := range constraint.PublicInputs {
|
||||
newConstr := &Constraint{
|
||||
Op: "in",
|
||||
@@ -178,6 +172,17 @@ func (p *Parser) Parse() (*Circuit, error) {
|
||||
}
|
||||
circuit.Constraints = append(circuit.Constraints, *newConstr)
|
||||
nInputs++
|
||||
circuit.Signals = addToArrayIfNotExist(circuit.Signals, in)
|
||||
circuit.NPublic++
|
||||
}
|
||||
for _, in := range constraint.PrivateInputs {
|
||||
newConstr := &Constraint{
|
||||
Op: "in",
|
||||
Out: in,
|
||||
}
|
||||
circuit.Constraints = append(circuit.Constraints, *newConstr)
|
||||
nInputs++
|
||||
circuit.Signals = addToArrayIfNotExist(circuit.Signals, in)
|
||||
}
|
||||
circuit.PublicInputs = constraint.PublicInputs
|
||||
circuit.PrivateInputs = constraint.PrivateInputs
|
||||
@@ -186,6 +191,22 @@ func (p *Parser) Parse() (*Circuit, error) {
|
||||
if constraint.Literal == "equals" {
|
||||
// TODO
|
||||
fmt.Println("circuit.Signals", circuit.Signals)
|
||||
constr1 := &Constraint{
|
||||
Op: "*",
|
||||
V1: constraint.V2,
|
||||
V2: "1",
|
||||
Out: constraint.V1,
|
||||
Literal: "equals(" + constraint.V1 + ", " + constraint.V2 + "): " + constraint.V1 + "==" + constraint.V2 + " * 1",
|
||||
}
|
||||
circuit.Constraints = append(circuit.Constraints, *constr1)
|
||||
constr2 := &Constraint{
|
||||
Op: "*",
|
||||
V1: constraint.V1,
|
||||
V2: "1",
|
||||
Out: constraint.V2,
|
||||
Literal: "equals(" + constraint.V1 + ", " + constraint.V2 + "): " + constraint.V2 + "==" + constraint.V1 + " * 1",
|
||||
}
|
||||
circuit.Constraints = append(circuit.Constraints, *constr2)
|
||||
continue
|
||||
}
|
||||
circuit.Constraints = append(circuit.Constraints, *constraint)
|
||||
@@ -197,31 +218,26 @@ func (p *Parser) Parse() (*Circuit, error) {
|
||||
if !isVal {
|
||||
circuit.Signals = addToArrayIfNotExist(circuit.Signals, constraint.V2)
|
||||
}
|
||||
// fmt.Println("---")
|
||||
// fmt.Println(circuit.PublicInputs[0])
|
||||
// fmt.Println(constraint.Out)
|
||||
// fmt.Println(constraint.Out == circuit.PublicInputs[0])
|
||||
// fmt.Println("---")
|
||||
|
||||
// if constraint.Out == "out" {
|
||||
// if Out is "out", put it after first value (one) and before the inputs
|
||||
// if constraint.Out == circuit.PublicInputs[0] {
|
||||
if existInArray(circuit.PublicInputs, constraint.Out) {
|
||||
// if Out is a public signal, put it after first value (one) and before the private inputs
|
||||
if !existInArray(circuit.Signals, constraint.Out) {
|
||||
// if already don't exists in signal array
|
||||
signalsCopy := copyArray(circuit.Signals)
|
||||
var auxSignals []string
|
||||
auxSignals = append(auxSignals, signalsCopy[0])
|
||||
auxSignals = append(auxSignals, constraint.Out)
|
||||
auxSignals = append(auxSignals, signalsCopy[1:]...)
|
||||
circuit.Signals = auxSignals
|
||||
// circuit.PublicInputs = append(circuit.PublicInputs, constraint.Out)
|
||||
circuit.NPublic++
|
||||
}
|
||||
} else {
|
||||
// if existInArray(circuit.PublicInputs, constraint.Out) {
|
||||
// // if Out is a public signal, put it after first value (one) and before the private inputs
|
||||
// if !existInArray(circuit.Signals, constraint.Out) {
|
||||
// // if already don't exists in signal array
|
||||
// signalsCopy := copyArray(circuit.Signals)
|
||||
// var auxSignals []string
|
||||
// auxSignals = append(auxSignals, signalsCopy[0])
|
||||
// auxSignals = append(auxSignals, constraint.Out)
|
||||
// auxSignals = append(auxSignals, signalsCopy[1:]...)
|
||||
// circuit.Signals = auxSignals
|
||||
// // circuit.PublicInputs = append(circuit.PublicInputs, constraint.Out)
|
||||
// circuit.NPublic++
|
||||
// }
|
||||
// } else {
|
||||
circuit.Signals = addToArrayIfNotExist(circuit.Signals, constraint.Out)
|
||||
}
|
||||
// }
|
||||
}
|
||||
circuit.NVars = len(circuit.Signals)
|
||||
circuit.NSignals = len(circuit.Signals)
|
||||
|
||||
117
snark_test.go
117
snark_test.go
@@ -25,8 +25,7 @@ func TestZkFromFlatCircuitCode(t *testing.T) {
|
||||
s3 = s2 * s0
|
||||
s4 = s3 + s0
|
||||
s5 = s4 + 5
|
||||
s1 = s5 * 1
|
||||
s5 = s1 * 1
|
||||
equals(s1, s5)
|
||||
out = 1 * 1
|
||||
`
|
||||
fmt.Print("\nflat code of the circuit:")
|
||||
@@ -127,6 +126,7 @@ func TestZkFromFlatCircuitCode(t *testing.T) {
|
||||
// fmt.Println(proof)
|
||||
|
||||
// fmt.Println("public signals:", proof.PublicSignals)
|
||||
fmt.Println("\n", circuit.Signals)
|
||||
fmt.Println("\nwitness", w)
|
||||
b35Verif := big.NewInt(int64(35))
|
||||
publicSignalsVerif := []*big.Int{b35Verif}
|
||||
@@ -140,31 +140,38 @@ func TestZkFromFlatCircuitCode(t *testing.T) {
|
||||
assert.True(t, !VerifyProof(*circuit, setup, proof, wrongPublicSignalsVerif, true))
|
||||
}
|
||||
|
||||
/*
|
||||
func TestZkMultiplication(t *testing.T) {
|
||||
|
||||
// compile circuit and get the R1CS
|
||||
flatCode := `
|
||||
func test(a, b):
|
||||
out = a * b
|
||||
func test(private a, private b, public c):
|
||||
d = a * b
|
||||
equals(c, d)
|
||||
out = 1 * 1
|
||||
`
|
||||
fmt.Print("\nflat code of the circuit:")
|
||||
fmt.Println(flatCode)
|
||||
|
||||
// parse the code
|
||||
parser := circuitcompiler.NewParser(strings.NewReader(flatCode))
|
||||
circuit, err := parser.Parse()
|
||||
assert.Nil(t, err)
|
||||
fmt.Println("\ncircuit data:", circuit)
|
||||
circuitJson, _ := json.Marshal(circuit)
|
||||
fmt.Println("circuit:", string(circuitJson))
|
||||
|
||||
b3 := big.NewInt(int64(3))
|
||||
b4 := big.NewInt(int64(4))
|
||||
inputs := []*big.Int{b3, b4}
|
||||
// wittness
|
||||
w, err := circuit.CalculateWitness(inputs)
|
||||
assert.Nil(t, err)
|
||||
privateInputs := []*big.Int{b3, b4}
|
||||
b12 := big.NewInt(int64(12))
|
||||
publicSignals := []*big.Int{b12}
|
||||
|
||||
fmt.Println("circuit")
|
||||
fmt.Println(circuit.NPublic)
|
||||
// wittness
|
||||
w, err := circuit.CalculateWitness(privateInputs, publicSignals)
|
||||
assert.Nil(t, err)
|
||||
fmt.Println("\n", circuit.Signals)
|
||||
fmt.Println("witness", w)
|
||||
|
||||
// flat code to R1CS
|
||||
fmt.Println("\ngenerating R1CS from flat code")
|
||||
a, b, c := circuit.GenerateR1CS()
|
||||
fmt.Println("\nR1CS:")
|
||||
fmt.Println("a:", a)
|
||||
@@ -172,43 +179,87 @@ func TestZkMultiplication(t *testing.T) {
|
||||
fmt.Println("c:", c)
|
||||
|
||||
// R1CS to QAP
|
||||
alphas, betas, gammas, zx := Utils.PF.R1CSToQAP(a, b, c)
|
||||
// TODO zxQAP is not used and is an old impl, bad calculated. TODO remove
|
||||
alphas, betas, gammas, zxQAP := Utils.PF.R1CSToQAP(a, b, c)
|
||||
fmt.Println("qap")
|
||||
fmt.Println("alphas", alphas)
|
||||
fmt.Println("betas", betas)
|
||||
fmt.Println("gammas", gammas)
|
||||
fmt.Println("alphas", len(alphas))
|
||||
fmt.Println("alphas[1]", alphas[1])
|
||||
fmt.Println("betas", len(betas))
|
||||
fmt.Println("gammas", len(gammas))
|
||||
fmt.Println("zx length", len(zxQAP))
|
||||
assert.True(t, !bytes.Equal(alphas[1][1].Bytes(), big.NewInt(int64(0)).Bytes()))
|
||||
|
||||
ax, bx, cx, px := Utils.PF.CombinePolynomials(w, alphas, betas, gammas)
|
||||
fmt.Println("ax length", len(ax))
|
||||
fmt.Println("bx length", len(bx))
|
||||
fmt.Println("cx length", len(cx))
|
||||
fmt.Println("px length", len(px))
|
||||
fmt.Println("px[last]", px[0])
|
||||
|
||||
hx := Utils.PF.DivisorPolynomial(px, zx)
|
||||
hxQAP := Utils.PF.DivisorPolynomial(px, zxQAP)
|
||||
fmt.Println("hx length", len(hxQAP))
|
||||
|
||||
// hx==px/zx so px==hx*zx
|
||||
assert.Equal(t, px, Utils.PF.Mul(hx, zx))
|
||||
assert.Equal(t, px, Utils.PF.Mul(hxQAP, zxQAP))
|
||||
|
||||
// p(x) = a(x) * b(x) - c(x) == h(x) * z(x)
|
||||
abc := Utils.PF.Sub(Utils.PF.Mul(ax, bx), cx)
|
||||
assert.Equal(t, abc, px)
|
||||
hz := Utils.PF.Mul(hx, zx)
|
||||
assert.Equal(t, abc, hz)
|
||||
hzQAP := Utils.PF.Mul(hxQAP, zxQAP)
|
||||
assert.Equal(t, abc, hzQAP)
|
||||
|
||||
div, rem := Utils.PF.Div(px, zx)
|
||||
assert.Equal(t, hx, div)
|
||||
assert.Equal(t, rem, r1csqap.ArrayOfBigZeros(1))
|
||||
div, rem := Utils.PF.Div(px, zxQAP)
|
||||
assert.Equal(t, hxQAP, div)
|
||||
assert.Equal(t, rem, r1csqap.ArrayOfBigZeros(4))
|
||||
|
||||
// calculate trusted setup
|
||||
setup, err := GenerateTrustedSetup(len(w), *circuit, alphas, betas, gammas, zx)
|
||||
setup, err := GenerateTrustedSetup(len(w), *circuit, alphas, betas, gammas)
|
||||
assert.Nil(t, err)
|
||||
fmt.Println("\nt:", setup.Toxic.T)
|
||||
|
||||
// zx and setup.Pk.Z should be the same (currently not, the correct one is the calculation used inside GenerateTrustedSetup function), the calculation is repeated. TODO avoid repeating calculation
|
||||
// assert.Equal(t, zxQAP, setup.Pk.Z)
|
||||
|
||||
fmt.Println("hx pk.z", hxQAP)
|
||||
hx := Utils.PF.DivisorPolynomial(px, setup.Pk.Z)
|
||||
fmt.Println("hx pk.z", hx)
|
||||
// assert.Equal(t, hxQAP, hx)
|
||||
div, rem = Utils.PF.Div(px, setup.Pk.Z)
|
||||
assert.Equal(t, hx, div)
|
||||
assert.Equal(t, rem, r1csqap.ArrayOfBigZeros(4))
|
||||
|
||||
assert.Equal(t, px, Utils.PF.Mul(hxQAP, zxQAP))
|
||||
// hx==px/zx so px==hx*zx
|
||||
assert.Equal(t, px, Utils.PF.Mul(hx, setup.Pk.Z))
|
||||
|
||||
// check length of polynomials H(x) and Z(x)
|
||||
assert.Equal(t, len(hx), len(px)-len(setup.Pk.Z)+1)
|
||||
assert.Equal(t, len(hxQAP), len(px)-len(zxQAP)+1)
|
||||
|
||||
// fmt.Println("pk.Z", len(setup.Pk.Z))
|
||||
// fmt.Println("zxQAP", len(zxQAP))
|
||||
|
||||
proof, err := GenerateProofs(*circuit, setup, w, px)
|
||||
assert.Nil(t, err)
|
||||
|
||||
// piA = g1 * A(t), piB = g2 * B(t), piC = g1 * C(t), piH = g1 * H(t)
|
||||
proof, err := GenerateProofs(*circuit, setup, hx, w)
|
||||
assert.Nil(t, err)
|
||||
// fmt.Println("\n proofs:")
|
||||
// fmt.Println(proof)
|
||||
|
||||
// assert.True(t, VerifyProof(*circuit, setup, proof, false))
|
||||
b35 := big.NewInt(int64(35))
|
||||
publicSignals := []*big.Int{b35}
|
||||
assert.True(t, VerifyProof(*circuit, setup, proof, publicSignals, true))
|
||||
// fmt.Println("public signals:", proof.PublicSignals)
|
||||
fmt.Println("\n", circuit.Signals)
|
||||
fmt.Println("\nwitness", w)
|
||||
b12Verif := big.NewInt(int64(12))
|
||||
publicSignalsVerif := []*big.Int{b12Verif}
|
||||
before := time.Now()
|
||||
assert.True(t, VerifyProof(*circuit, setup, proof, publicSignalsVerif, true))
|
||||
fmt.Println("verify proof time elapsed:", time.Since(before))
|
||||
|
||||
// check that with another public input the verification returns false
|
||||
bOtherWrongPublic := big.NewInt(int64(11))
|
||||
wrongPublicSignalsVerif := []*big.Int{bOtherWrongPublic}
|
||||
assert.True(t, !VerifyProof(*circuit, setup, proof, wrongPublicSignalsVerif, true))
|
||||
}
|
||||
*/
|
||||
|
||||
/*
|
||||
func TestZkFromHardcodedR1CS(t *testing.T) {
|
||||
b0 := big.NewInt(int64(0))
|
||||
|
||||
Reference in New Issue
Block a user