mirror of
https://github.com/arnaucube/go-snark-study.git
synced 2026-02-02 17:26:41 +01:00
add Groth16 proof generation & verification
This commit is contained in:
@@ -3,6 +3,7 @@
|
|||||||
package groth16
|
package groth16
|
||||||
|
|
||||||
import (
|
import (
|
||||||
|
"fmt"
|
||||||
"math/big"
|
"math/big"
|
||||||
|
|
||||||
"github.com/arnaucube/go-snark/bn128"
|
"github.com/arnaucube/go-snark/bn128"
|
||||||
@@ -53,8 +54,8 @@ type Setup struct {
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
// ProofGroth contains the parameters to proof the zkSNARK
|
// Proof contains the parameters to proof the zkSNARK
|
||||||
type ProofGroth struct {
|
type Proof struct {
|
||||||
PiA [3]*big.Int
|
PiA [3]*big.Int
|
||||||
PiB [3][2]*big.Int
|
PiB [3][2]*big.Int
|
||||||
PiC [3]*big.Int
|
PiC [3]*big.Int
|
||||||
@@ -216,3 +217,86 @@ func GenerateTrustedSetup(witnessLength int, circuit circuitcompiler.Circuit, al
|
|||||||
|
|
||||||
return setup, nil
|
return setup, nil
|
||||||
}
|
}
|
||||||
|
|
||||||
|
// GenerateProofs generates all the parameters to proof the zkSNARK from the Circuit, Setup and the Witness
|
||||||
|
func GenerateProofs(circuit circuitcompiler.Circuit, setup Setup, w []*big.Int, px []*big.Int) (Proof, error) {
|
||||||
|
var proof Proof
|
||||||
|
proof.PiA = [3]*big.Int{Utils.Bn.G1.F.Zero(), Utils.Bn.G1.F.Zero(), Utils.Bn.G1.F.Zero()}
|
||||||
|
proof.PiB = Utils.Bn.Fq6.Zero()
|
||||||
|
proof.PiC = [3]*big.Int{Utils.Bn.G1.F.Zero(), Utils.Bn.G1.F.Zero(), Utils.Bn.G1.F.Zero()}
|
||||||
|
|
||||||
|
r, err := Utils.FqR.Rand()
|
||||||
|
if err != nil {
|
||||||
|
return Proof{}, err
|
||||||
|
}
|
||||||
|
s, err := Utils.FqR.Rand()
|
||||||
|
if err != nil {
|
||||||
|
return Proof{}, err
|
||||||
|
}
|
||||||
|
|
||||||
|
// piBG1 will hold all the same than proof.PiB but in G1 curve
|
||||||
|
piBG1 := [3]*big.Int{Utils.Bn.G1.F.Zero(), Utils.Bn.G1.F.Zero(), Utils.Bn.G1.F.Zero()}
|
||||||
|
|
||||||
|
for i := 0; i < circuit.NVars; i++ {
|
||||||
|
proof.PiA = Utils.Bn.G1.Add(proof.PiA, Utils.Bn.G1.MulScalar(setup.Pk.G1.At[i], w[i]))
|
||||||
|
piBG1 = Utils.Bn.G1.Add(piBG1, Utils.Bn.G1.MulScalar(setup.Pk.G1.BACGamma[i], w[i]))
|
||||||
|
proof.PiB = Utils.Bn.G2.Add(proof.PiB, Utils.Bn.G2.MulScalar(setup.Pk.G2.BACGamma[i], w[i]))
|
||||||
|
}
|
||||||
|
for i := circuit.NPublic + 1; i < circuit.NVars; i++ {
|
||||||
|
proof.PiC = Utils.Bn.G1.Add(proof.PiC, Utils.Bn.G1.MulScalar(setup.Pk.BACDelta[i], w[i]))
|
||||||
|
}
|
||||||
|
|
||||||
|
// piA = (Σ from 0 to m (pk.A * w[i])) + pk.Alpha1 + r * δ
|
||||||
|
proof.PiA = Utils.Bn.G1.Add(proof.PiA, setup.Pk.G1.Alpha)
|
||||||
|
deltaR := Utils.Bn.G1.MulScalar(setup.Pk.G1.Delta, r)
|
||||||
|
proof.PiA = Utils.Bn.G1.Add(proof.PiA, deltaR)
|
||||||
|
|
||||||
|
// piBG1 = (Σ from 0 to m (pk.B1 * w[i])) + pk.g1.Beta + s * δ
|
||||||
|
// piB = piB2 = (Σ from 0 to m (pk.B2 * w[i])) + pk.g2.Beta + s * δ
|
||||||
|
piBG1 = Utils.Bn.G1.Add(piBG1, setup.Pk.G1.Beta)
|
||||||
|
proof.PiB = Utils.Bn.G2.Add(proof.PiB, setup.Pk.G2.Beta)
|
||||||
|
deltaSG1 := Utils.Bn.G1.MulScalar(setup.Pk.G1.Delta, s)
|
||||||
|
piBG1 = Utils.Bn.G1.Add(piBG1, deltaSG1)
|
||||||
|
deltaSG2 := Utils.Bn.G2.MulScalar(setup.Pk.G2.Delta, s)
|
||||||
|
proof.PiB = Utils.Bn.G2.Add(proof.PiB, deltaSG2)
|
||||||
|
|
||||||
|
hx := Utils.PF.DivisorPolynomial(px, setup.Pk.Z) // maybe move this calculation to a previous step
|
||||||
|
|
||||||
|
// piC = (Σ from l+1 to m (w[i] * (pk.g1.Beta + pk.g1.Alpha + pk.C)) + h(tau)) / δ) + piA*s + r*piB - r*s*δ
|
||||||
|
for i := 0; i < len(hx); i++ {
|
||||||
|
proof.PiC = Utils.Bn.G1.Add(proof.PiC, Utils.Bn.G1.MulScalar(setup.Pk.PowersTauDelta[i], hx[i]))
|
||||||
|
}
|
||||||
|
proof.PiC = Utils.Bn.G1.Add(proof.PiC, Utils.Bn.G1.MulScalar(proof.PiA, s))
|
||||||
|
proof.PiC = Utils.Bn.G1.Add(proof.PiC, Utils.Bn.G1.MulScalar(piBG1, r))
|
||||||
|
negRS := Utils.FqR.Neg(Utils.FqR.Mul(r, s))
|
||||||
|
proof.PiC = Utils.Bn.G1.Add(proof.PiC, Utils.Bn.G1.MulScalar(setup.Pk.G1.Delta, negRS))
|
||||||
|
|
||||||
|
return proof, nil
|
||||||
|
}
|
||||||
|
|
||||||
|
// VerifyProof verifies over the BN128 the Pairings of the Proof
|
||||||
|
func VerifyProof(circuit circuitcompiler.Circuit, setup Setup, proof Proof, publicSignals []*big.Int, debug bool) bool {
|
||||||
|
|
||||||
|
icPubl := setup.Vk.IC[0]
|
||||||
|
for i := 0; i < len(publicSignals); i++ {
|
||||||
|
icPubl = Utils.Bn.G1.Add(icPubl, Utils.Bn.G1.MulScalar(setup.Vk.IC[i+1], publicSignals[i]))
|
||||||
|
}
|
||||||
|
|
||||||
|
if !Utils.Bn.Fq12.Equal(
|
||||||
|
Utils.Bn.Pairing(proof.PiA, proof.PiB),
|
||||||
|
Utils.Bn.Fq12.Mul(
|
||||||
|
Utils.Bn.Pairing(setup.Vk.G1.Alpha, setup.Vk.G2.Beta),
|
||||||
|
Utils.Bn.Fq12.Mul(
|
||||||
|
Utils.Bn.Pairing(icPubl, setup.Vk.G2.Gamma),
|
||||||
|
Utils.Bn.Pairing(proof.PiC, setup.Vk.G2.Delta)))) {
|
||||||
|
if debug {
|
||||||
|
fmt.Println("❌ groth16 verification not passed")
|
||||||
|
}
|
||||||
|
return false
|
||||||
|
}
|
||||||
|
if debug {
|
||||||
|
fmt.Println("✓ groth16 verification passed")
|
||||||
|
}
|
||||||
|
|
||||||
|
return true
|
||||||
|
}
|
||||||
|
|||||||
107
groth16/groth16_test.go
Normal file
107
groth16/groth16_test.go
Normal file
@@ -0,0 +1,107 @@
|
|||||||
|
package groth16
|
||||||
|
|
||||||
|
import (
|
||||||
|
"bytes"
|
||||||
|
"fmt"
|
||||||
|
"math/big"
|
||||||
|
"strings"
|
||||||
|
"testing"
|
||||||
|
"time"
|
||||||
|
|
||||||
|
"github.com/arnaucube/go-snark/circuitcompiler"
|
||||||
|
"github.com/arnaucube/go-snark/r1csqap"
|
||||||
|
"github.com/stretchr/testify/assert"
|
||||||
|
)
|
||||||
|
|
||||||
|
func TestGroth16MinimalFlow(t *testing.T) {
|
||||||
|
fmt.Println("testing Groth16 minimal flow")
|
||||||
|
// circuit function
|
||||||
|
// y = x^3 + x + 5
|
||||||
|
code := `
|
||||||
|
func main(private s0, public s1):
|
||||||
|
s2 = s0 * s0
|
||||||
|
s3 = s2 * s0
|
||||||
|
s4 = s3 + s0
|
||||||
|
s5 = s4 + 5
|
||||||
|
equals(s1, s5)
|
||||||
|
out = 1 * 1
|
||||||
|
`
|
||||||
|
fmt.Print("\ncode of the circuit:")
|
||||||
|
|
||||||
|
// parse the code
|
||||||
|
parser := circuitcompiler.NewParser(strings.NewReader(code))
|
||||||
|
circuit, err := parser.Parse()
|
||||||
|
assert.Nil(t, err)
|
||||||
|
|
||||||
|
b3 := big.NewInt(int64(3))
|
||||||
|
privateInputs := []*big.Int{b3}
|
||||||
|
b35 := big.NewInt(int64(35))
|
||||||
|
publicSignals := []*big.Int{b35}
|
||||||
|
|
||||||
|
// wittness
|
||||||
|
w, err := circuit.CalculateWitness(privateInputs, publicSignals)
|
||||||
|
assert.Nil(t, err)
|
||||||
|
|
||||||
|
// code to R1CS
|
||||||
|
fmt.Println("\ngenerating R1CS from code")
|
||||||
|
a, b, c := circuit.GenerateR1CS()
|
||||||
|
fmt.Println("\nR1CS:")
|
||||||
|
fmt.Println("a:", a)
|
||||||
|
fmt.Println("b:", b)
|
||||||
|
fmt.Println("c:", c)
|
||||||
|
|
||||||
|
// R1CS to QAP
|
||||||
|
// TODO zxQAP is not used and is an old impl, TODO remove
|
||||||
|
alphas, betas, gammas, _ := Utils.PF.R1CSToQAP(a, b, c)
|
||||||
|
fmt.Println("qap")
|
||||||
|
assert.Equal(t, 8, len(alphas))
|
||||||
|
assert.Equal(t, 8, len(alphas))
|
||||||
|
assert.Equal(t, 8, len(alphas))
|
||||||
|
assert.True(t, !bytes.Equal(alphas[1][1].Bytes(), big.NewInt(int64(0)).Bytes()))
|
||||||
|
|
||||||
|
ax, bx, cx, px := Utils.PF.CombinePolynomials(w, alphas, betas, gammas)
|
||||||
|
assert.Equal(t, 7, len(ax))
|
||||||
|
assert.Equal(t, 7, len(bx))
|
||||||
|
assert.Equal(t, 7, len(cx))
|
||||||
|
assert.Equal(t, 13, len(px))
|
||||||
|
|
||||||
|
// ---
|
||||||
|
// from here is the GROTH16
|
||||||
|
// ---
|
||||||
|
// calculate trusted setup
|
||||||
|
fmt.Println("groth")
|
||||||
|
setup, err := GenerateTrustedSetup(len(w), *circuit, alphas, betas, gammas)
|
||||||
|
assert.Nil(t, err)
|
||||||
|
fmt.Println("\nt:", setup.Toxic.T)
|
||||||
|
|
||||||
|
hx := Utils.PF.DivisorPolynomial(px, setup.Pk.Z)
|
||||||
|
div, rem := Utils.PF.Div(px, setup.Pk.Z)
|
||||||
|
assert.Equal(t, hx, div)
|
||||||
|
assert.Equal(t, rem, r1csqap.ArrayOfBigZeros(6))
|
||||||
|
|
||||||
|
// hx==px/zx so px==hx*zx
|
||||||
|
assert.Equal(t, px, Utils.PF.Mul(hx, setup.Pk.Z))
|
||||||
|
|
||||||
|
// check length of polynomials H(x) and Z(x)
|
||||||
|
assert.Equal(t, len(hx), len(px)-len(setup.Pk.Z)+1)
|
||||||
|
|
||||||
|
proof, err := GenerateProofs(*circuit, setup, w, px)
|
||||||
|
assert.Nil(t, err)
|
||||||
|
|
||||||
|
// fmt.Println("\n proofs:")
|
||||||
|
// fmt.Println(proof)
|
||||||
|
|
||||||
|
// fmt.Println("public signals:", proof.PublicSignals)
|
||||||
|
fmt.Println("\nsignals:", circuit.Signals)
|
||||||
|
fmt.Println("witness:", w)
|
||||||
|
b35Verif := big.NewInt(int64(35))
|
||||||
|
publicSignalsVerif := []*big.Int{b35Verif}
|
||||||
|
before := time.Now()
|
||||||
|
assert.True(t, VerifyProof(*circuit, setup, proof, publicSignalsVerif, true))
|
||||||
|
fmt.Println("verify proof time elapsed:", time.Since(before))
|
||||||
|
|
||||||
|
// check that with another public input the verification returns false
|
||||||
|
bOtherWrongPublic := big.NewInt(int64(34))
|
||||||
|
wrongPublicSignalsVerif := []*big.Int{bOtherWrongPublic}
|
||||||
|
assert.True(t, !VerifyProof(*circuit, setup, proof, wrongPublicSignalsVerif, false))
|
||||||
|
}
|
||||||
10
snark.go
10
snark.go
@@ -1,3 +1,5 @@
|
|||||||
|
// implementation of https://eprint.iacr.org/2013/879.pdf
|
||||||
|
|
||||||
package snark
|
package snark
|
||||||
|
|
||||||
import (
|
import (
|
||||||
@@ -289,7 +291,9 @@ func VerifyProof(circuit circuitcompiler.Circuit, setup Setup, proof Proof, publ
|
|||||||
pairingPiaVa := Utils.Bn.Pairing(proof.PiA, setup.Vk.Vka)
|
pairingPiaVa := Utils.Bn.Pairing(proof.PiA, setup.Vk.Vka)
|
||||||
pairingPiapG2 := Utils.Bn.Pairing(proof.PiAp, Utils.Bn.G2.G)
|
pairingPiapG2 := Utils.Bn.Pairing(proof.PiAp, Utils.Bn.G2.G)
|
||||||
if !Utils.Bn.Fq12.Equal(pairingPiaVa, pairingPiapG2) {
|
if !Utils.Bn.Fq12.Equal(pairingPiaVa, pairingPiapG2) {
|
||||||
|
if debug {
|
||||||
fmt.Println("❌ e(piA, Va) == e(piA', g2), valid knowledge commitment for A")
|
fmt.Println("❌ e(piA, Va) == e(piA', g2), valid knowledge commitment for A")
|
||||||
|
}
|
||||||
return false
|
return false
|
||||||
}
|
}
|
||||||
if debug {
|
if debug {
|
||||||
@@ -300,7 +304,9 @@ func VerifyProof(circuit circuitcompiler.Circuit, setup Setup, proof Proof, publ
|
|||||||
pairingVbPib := Utils.Bn.Pairing(setup.Vk.Vkb, proof.PiB)
|
pairingVbPib := Utils.Bn.Pairing(setup.Vk.Vkb, proof.PiB)
|
||||||
pairingPibpG2 := Utils.Bn.Pairing(proof.PiBp, Utils.Bn.G2.G)
|
pairingPibpG2 := Utils.Bn.Pairing(proof.PiBp, Utils.Bn.G2.G)
|
||||||
if !Utils.Bn.Fq12.Equal(pairingVbPib, pairingPibpG2) {
|
if !Utils.Bn.Fq12.Equal(pairingVbPib, pairingPibpG2) {
|
||||||
|
if debug {
|
||||||
fmt.Println("❌ e(Vb, piB) == e(piB', g2), valid knowledge commitment for B")
|
fmt.Println("❌ e(Vb, piB) == e(piB', g2), valid knowledge commitment for B")
|
||||||
|
}
|
||||||
return false
|
return false
|
||||||
}
|
}
|
||||||
if debug {
|
if debug {
|
||||||
@@ -311,7 +317,9 @@ func VerifyProof(circuit circuitcompiler.Circuit, setup Setup, proof Proof, publ
|
|||||||
pairingPicVc := Utils.Bn.Pairing(proof.PiC, setup.Vk.Vkc)
|
pairingPicVc := Utils.Bn.Pairing(proof.PiC, setup.Vk.Vkc)
|
||||||
pairingPicpG2 := Utils.Bn.Pairing(proof.PiCp, Utils.Bn.G2.G)
|
pairingPicpG2 := Utils.Bn.Pairing(proof.PiCp, Utils.Bn.G2.G)
|
||||||
if !Utils.Bn.Fq12.Equal(pairingPicVc, pairingPicpG2) {
|
if !Utils.Bn.Fq12.Equal(pairingPicVc, pairingPicpG2) {
|
||||||
|
if debug {
|
||||||
fmt.Println("❌ e(piC, Vc) == e(piC', g2), valid knowledge commitment for C")
|
fmt.Println("❌ e(piC, Vc) == e(piC', g2), valid knowledge commitment for C")
|
||||||
|
}
|
||||||
return false
|
return false
|
||||||
}
|
}
|
||||||
if debug {
|
if debug {
|
||||||
@@ -330,7 +338,9 @@ func VerifyProof(circuit circuitcompiler.Circuit, setup Setup, proof Proof, publ
|
|||||||
Utils.Bn.Fq12.Mul(
|
Utils.Bn.Fq12.Mul(
|
||||||
Utils.Bn.Pairing(proof.PiH, setup.Vk.Vkz),
|
Utils.Bn.Pairing(proof.PiH, setup.Vk.Vkz),
|
||||||
Utils.Bn.Pairing(proof.PiC, Utils.Bn.G2.G))) {
|
Utils.Bn.Pairing(proof.PiC, Utils.Bn.G2.G))) {
|
||||||
|
if debug {
|
||||||
fmt.Println("❌ e(Vkx+piA, piB) == e(piH, Vkz) * e(piC, g2), QAP disibility checked")
|
fmt.Println("❌ e(Vkx+piA, piB) == e(piH, Vkz) * e(piC, g2), QAP disibility checked")
|
||||||
|
}
|
||||||
return false
|
return false
|
||||||
}
|
}
|
||||||
if debug {
|
if debug {
|
||||||
|
|||||||
100
snark_test.go
100
snark_test.go
@@ -9,10 +9,104 @@ import (
|
|||||||
"time"
|
"time"
|
||||||
|
|
||||||
"github.com/arnaucube/go-snark/circuitcompiler"
|
"github.com/arnaucube/go-snark/circuitcompiler"
|
||||||
|
"github.com/arnaucube/go-snark/groth16"
|
||||||
"github.com/arnaucube/go-snark/r1csqap"
|
"github.com/arnaucube/go-snark/r1csqap"
|
||||||
"github.com/stretchr/testify/assert"
|
"github.com/stretchr/testify/assert"
|
||||||
)
|
)
|
||||||
|
|
||||||
|
func TestGroth16MinimalFlow(t *testing.T) {
|
||||||
|
fmt.Println("testing Groth16 minimal flow")
|
||||||
|
// circuit function
|
||||||
|
// y = x^3 + x + 5
|
||||||
|
code := `
|
||||||
|
func main(private s0, public s1):
|
||||||
|
s2 = s0 * s0
|
||||||
|
s3 = s2 * s0
|
||||||
|
s4 = s3 + s0
|
||||||
|
s5 = s4 + 5
|
||||||
|
equals(s1, s5)
|
||||||
|
out = 1 * 1
|
||||||
|
`
|
||||||
|
fmt.Print("\ncode of the circuit:")
|
||||||
|
|
||||||
|
// parse the code
|
||||||
|
parser := circuitcompiler.NewParser(strings.NewReader(code))
|
||||||
|
circuit, err := parser.Parse()
|
||||||
|
assert.Nil(t, err)
|
||||||
|
|
||||||
|
b3 := big.NewInt(int64(3))
|
||||||
|
privateInputs := []*big.Int{b3}
|
||||||
|
b35 := big.NewInt(int64(35))
|
||||||
|
publicSignals := []*big.Int{b35}
|
||||||
|
|
||||||
|
// wittness
|
||||||
|
w, err := circuit.CalculateWitness(privateInputs, publicSignals)
|
||||||
|
assert.Nil(t, err)
|
||||||
|
|
||||||
|
// code to R1CS
|
||||||
|
fmt.Println("\ngenerating R1CS from code")
|
||||||
|
a, b, c := circuit.GenerateR1CS()
|
||||||
|
fmt.Println("\nR1CS:")
|
||||||
|
fmt.Println("a:", a)
|
||||||
|
fmt.Println("b:", b)
|
||||||
|
fmt.Println("c:", c)
|
||||||
|
|
||||||
|
// R1CS to QAP
|
||||||
|
// TODO zxQAP is not used and is an old impl, TODO remove
|
||||||
|
alphas, betas, gammas, _ := Utils.PF.R1CSToQAP(a, b, c)
|
||||||
|
fmt.Println("qap")
|
||||||
|
assert.Equal(t, 8, len(alphas))
|
||||||
|
assert.Equal(t, 8, len(alphas))
|
||||||
|
assert.Equal(t, 8, len(alphas))
|
||||||
|
assert.True(t, !bytes.Equal(alphas[1][1].Bytes(), big.NewInt(int64(0)).Bytes()))
|
||||||
|
|
||||||
|
ax, bx, cx, px := Utils.PF.CombinePolynomials(w, alphas, betas, gammas)
|
||||||
|
assert.Equal(t, 7, len(ax))
|
||||||
|
assert.Equal(t, 7, len(bx))
|
||||||
|
assert.Equal(t, 7, len(cx))
|
||||||
|
assert.Equal(t, 13, len(px))
|
||||||
|
|
||||||
|
// ---
|
||||||
|
// from here is the GROTH16
|
||||||
|
// ---
|
||||||
|
// calculate trusted setup
|
||||||
|
fmt.Println("groth")
|
||||||
|
setup, err := groth16.GenerateTrustedSetup(len(w), *circuit, alphas, betas, gammas)
|
||||||
|
assert.Nil(t, err)
|
||||||
|
fmt.Println("\nt:", setup.Toxic.T)
|
||||||
|
|
||||||
|
hx := Utils.PF.DivisorPolynomial(px, setup.Pk.Z)
|
||||||
|
div, rem := Utils.PF.Div(px, setup.Pk.Z)
|
||||||
|
assert.Equal(t, hx, div)
|
||||||
|
assert.Equal(t, rem, r1csqap.ArrayOfBigZeros(6))
|
||||||
|
|
||||||
|
// hx==px/zx so px==hx*zx
|
||||||
|
assert.Equal(t, px, Utils.PF.Mul(hx, setup.Pk.Z))
|
||||||
|
|
||||||
|
// check length of polynomials H(x) and Z(x)
|
||||||
|
assert.Equal(t, len(hx), len(px)-len(setup.Pk.Z)+1)
|
||||||
|
|
||||||
|
proof, err := groth16.GenerateProofs(*circuit, setup, w, px)
|
||||||
|
assert.Nil(t, err)
|
||||||
|
|
||||||
|
// fmt.Println("\n proofs:")
|
||||||
|
// fmt.Println(proof)
|
||||||
|
|
||||||
|
// fmt.Println("public signals:", proof.PublicSignals)
|
||||||
|
fmt.Println("\nsignals:", circuit.Signals)
|
||||||
|
fmt.Println("witness:", w)
|
||||||
|
b35Verif := big.NewInt(int64(35))
|
||||||
|
publicSignalsVerif := []*big.Int{b35Verif}
|
||||||
|
before := time.Now()
|
||||||
|
assert.True(t, groth16.VerifyProof(*circuit, setup, proof, publicSignalsVerif, true))
|
||||||
|
fmt.Println("verify proof time elapsed:", time.Since(before))
|
||||||
|
|
||||||
|
// check that with another public input the verification returns false
|
||||||
|
bOtherWrongPublic := big.NewInt(int64(34))
|
||||||
|
wrongPublicSignalsVerif := []*big.Int{bOtherWrongPublic}
|
||||||
|
assert.True(t, !groth16.VerifyProof(*circuit, setup, proof, wrongPublicSignalsVerif, false))
|
||||||
|
}
|
||||||
|
|
||||||
func TestZkFromFlatCircuitCode(t *testing.T) {
|
func TestZkFromFlatCircuitCode(t *testing.T) {
|
||||||
// compile circuit and get the R1CS
|
// compile circuit and get the R1CS
|
||||||
|
|
||||||
@@ -145,7 +239,7 @@ func TestZkFromFlatCircuitCode(t *testing.T) {
|
|||||||
// check that with another public input the verification returns false
|
// check that with another public input the verification returns false
|
||||||
bOtherWrongPublic := big.NewInt(int64(34))
|
bOtherWrongPublic := big.NewInt(int64(34))
|
||||||
wrongPublicSignalsVerif := []*big.Int{bOtherWrongPublic}
|
wrongPublicSignalsVerif := []*big.Int{bOtherWrongPublic}
|
||||||
assert.True(t, !VerifyProof(*circuit, setup, proof, wrongPublicSignalsVerif, true))
|
assert.True(t, !VerifyProof(*circuit, setup, proof, wrongPublicSignalsVerif, false))
|
||||||
}
|
}
|
||||||
|
|
||||||
func TestZkMultiplication(t *testing.T) {
|
func TestZkMultiplication(t *testing.T) {
|
||||||
@@ -253,7 +347,7 @@ func TestZkMultiplication(t *testing.T) {
|
|||||||
// check that with another public input the verification returns false
|
// check that with another public input the verification returns false
|
||||||
bOtherWrongPublic := big.NewInt(int64(11))
|
bOtherWrongPublic := big.NewInt(int64(11))
|
||||||
wrongPublicSignalsVerif := []*big.Int{bOtherWrongPublic}
|
wrongPublicSignalsVerif := []*big.Int{bOtherWrongPublic}
|
||||||
assert.True(t, !VerifyProof(*circuit, setup, proof, wrongPublicSignalsVerif, true))
|
assert.True(t, !VerifyProof(*circuit, setup, proof, wrongPublicSignalsVerif, false))
|
||||||
}
|
}
|
||||||
|
|
||||||
func TestMinimalFlow(t *testing.T) {
|
func TestMinimalFlow(t *testing.T) {
|
||||||
@@ -342,5 +436,5 @@ func TestMinimalFlow(t *testing.T) {
|
|||||||
// check that with another public input the verification returns false
|
// check that with another public input the verification returns false
|
||||||
bOtherWrongPublic := big.NewInt(int64(34))
|
bOtherWrongPublic := big.NewInt(int64(34))
|
||||||
wrongPublicSignalsVerif := []*big.Int{bOtherWrongPublic}
|
wrongPublicSignalsVerif := []*big.Int{bOtherWrongPublic}
|
||||||
assert.True(t, !VerifyProof(*circuit, setup, proof, wrongPublicSignalsVerif, true))
|
assert.True(t, !VerifyProof(*circuit, setup, proof, wrongPublicSignalsVerif, false))
|
||||||
}
|
}
|
||||||
|
|||||||
Reference in New Issue
Block a user