@ -0,0 +1,97 @@ |
|||
# go-snark [![Go Report Card](https://goreportcard.com/badge/github.com/arnaucube/go-snark)](https://goreportcard.com/report/github.com/arnaucube/go-snark) |
|||
|
|||
Not finished, work in progress (doing this in my free time, so I don't have much time). |
|||
|
|||
|
|||
|
|||
#### Test |
|||
``` |
|||
go test ./... -v |
|||
``` |
|||
|
|||
## R1CS to Quadratic Arithmetic Program |
|||
- `Succinct Non-Interactive Zero Knowledge for a von Neumann Architecture`, Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, Madars Virza https://eprint.iacr.org/2013/879.pdf |
|||
- Vitalik Buterin blog post about QAP https://medium.com/@VitalikButerin/quadratic-arithmetic-programs-from-zero-to-hero-f6d558cea649 |
|||
- Ariel Gabizon in Zcash blog https://z.cash/blog/snark-explain5 |
|||
- Lagrange polynomial Wikipedia article https://en.wikipedia.org/wiki/Lagrange_polynomial |
|||
|
|||
#### Usage |
|||
- R1CS to QAP |
|||
```go |
|||
b0 := big.NewFloat(float64(0)) |
|||
b1 := big.NewFloat(float64(1)) |
|||
b5 := big.NewFloat(float64(5)) |
|||
a := [][]*big.Float{ |
|||
[]*big.Float{b0, b1, b0, b0, b0, b0}, |
|||
[]*big.Float{b0, b0, b0, b1, b0, b0}, |
|||
[]*big.Float{b0, b1, b0, b0, b1, b0}, |
|||
[]*big.Float{b5, b0, b0, b0, b0, b1}, |
|||
} |
|||
b := [][]*big.Float{ |
|||
[]*big.Float{b0, b1, b0, b0, b0, b0}, |
|||
[]*big.Float{b0, b1, b0, b0, b0, b0}, |
|||
[]*big.Float{b1, b0, b0, b0, b0, b0}, |
|||
[]*big.Float{b1, b0, b0, b0, b0, b0}, |
|||
} |
|||
c := [][]*big.Float{ |
|||
[]*big.Float{b0, b0, b0, b1, b0, b0}, |
|||
[]*big.Float{b0, b0, b0, b0, b1, b0}, |
|||
[]*big.Float{b0, b0, b0, b0, b0, b1}, |
|||
[]*big.Float{b0, b0, b1, b0, b0, b0}, |
|||
} |
|||
alpha, beta, gamma, z := R1CSToQAP(a, b, c) |
|||
fmt.Println(alpha) |
|||
fmt.Println(beta) |
|||
fmt.Println(gamma) |
|||
fmt.Println(z) |
|||
/* |
|||
out: |
|||
alpha: [[-5 9.166666666666666 -5 0.8333333333333334] [8 -11.333333333333332 5 -0.6666666666666666] [0 0 0 0] [-6 9.5 -4 0.5] [4 -7 3.5 -0.5] [-1 1.8333333333333333 -1 0.16666666666666666]] |
|||
beta: [[3 -5.166666666666667 2.5 -0.33333333333333337] [-2 5.166666666666667 -2.5 0.33333333333333337] [0 0 0 0] [0 0 0 0] [0 0 0 0] [0 0 0 0]] |
|||
gamma: [[0 0 0 0] [0 0 0 0] [-1 1.8333333333333333 -1 0.16666666666666666] [4 -4.333333333333333 1.5 -0.16666666666666666] [-6 9.5 -4 0.5] [4 -7 3.5 -0.5]] |
|||
z: [24 -50 35 -10 1] |
|||
*/ |
|||
``` |
|||
|
|||
## Bn128 |
|||
Implementation of the bn128 pairing. |
|||
|
|||
|
|||
Implementation followng the information and the implementations from: |
|||
- `Multiplication and Squaring on Pairing-Friendly |
|||
Fields`, Augusto Jun Devegili, Colm Ó hÉigeartaigh, Michael Scott, and Ricardo Dahab https://pdfs.semanticscholar.org/3e01/de88d7428076b2547b60072088507d881bf1.pdf |
|||
- `Optimal Pairings`, Frederik Vercauteren https://www.cosic.esat.kuleuven.be/bcrypt/optimal.pdf , https://eprint.iacr.org/2008/096.pdf |
|||
- `Double-and-Add with Relative Jacobian |
|||
Coordinates`, Björn Fay https://eprint.iacr.org/2014/1014.pdf |
|||
- `Fast and Regular Algorithms for Scalar Multiplication |
|||
over Elliptic Curves`, Matthieu Rivain https://eprint.iacr.org/2011/338.pdf |
|||
- `High-Speed Software Implementation of the Optimal Ate Pairing over Barreto–Naehrig Curves`, Jean-Luc Beuchat, Jorge E. González-Díaz, Shigeo Mitsunari, Eiji Okamoto, Francisco Rodríguez-Henríquez, and Tadanori Teruya https://eprint.iacr.org/2010/354.pdf |
|||
- `New software speed records for cryptographic pairings`, Michael Naehrig, Ruben Niederhagen, Peter Schwabe https://cryptojedi.org/papers/dclxvi-20100714.pdf |
|||
- `Implementing Cryptographic Pairings over Barreto-Naehrig Curves`, Augusto Jun Devegili, Michael Scott, Ricardo Dahab https://eprint.iacr.org/2007/390.pdf |
|||
- https://github.com/zcash/zcash/tree/master/src/snark |
|||
- https://github.com/iden3/snarkjs |
|||
- https://github.com/ethereum/py_ecc/tree/master/py_ecc/bn128 |
|||
|
|||
|
|||
#### Usage |
|||
|
|||
- Pairing |
|||
```go |
|||
bn128, err := NewBn128() |
|||
assert.Nil(t, err) |
|||
|
|||
big25 := big.NewInt(int64(25)) |
|||
big30 := big.NewInt(int64(30)) |
|||
|
|||
g1a := bn128.G1.MulScalar(bn128.G1.G, big25) |
|||
g2a := bn128.G2.MulScalar(bn128.G2.G, big30) |
|||
|
|||
g1b := bn128.G1.MulScalar(bn128.G1.G, big30) |
|||
g2b := bn128.G2.MulScalar(bn128.G2.G, big25) |
|||
|
|||
pA, err := bn128.Pairing(g1a, g2a) |
|||
assert.Nil(t, err) |
|||
pB, err := bn128.Pairing(g1b, g2b) |
|||
assert.Nil(t, err) |
|||
assert.True(t, bn128.Fq12.Equal(pA, pB)) |
|||
``` |
@ -0,0 +1,674 @@ |
|||
GNU GENERAL PUBLIC LICENSE |
|||
Version 3, 29 June 2007 |
|||
|
|||
Copyright (C) 2007 Free Software Foundation, Inc. <https://fsf.org/> |
|||
Everyone is permitted to copy and distribute verbatim copies |
|||
of this license document, but changing it is not allowed. |
|||
|
|||
Preamble |
|||
|
|||
The GNU General Public License is a free, copyleft license for |
|||
software and other kinds of works. |
|||
|
|||
The licenses for most software and other practical works are designed |
|||
to take away your freedom to share and change the works. By contrast, |
|||
the GNU General Public License is intended to guarantee your freedom to |
|||
share and change all versions of a program--to make sure it remains free |
|||
software for all its users. We, the Free Software Foundation, use the |
|||
GNU General Public License for most of our software; it applies also to |
|||
any other work released this way by its authors. You can apply it to |
|||
your programs, too. |
|||
|
|||
When we speak of free software, we are referring to freedom, not |
|||
price. Our General Public Licenses are designed to make sure that you |
|||
have the freedom to distribute copies of free software (and charge for |
|||
them if you wish), that you receive source code or can get it if you |
|||
want it, that you can change the software or use pieces of it in new |
|||
free programs, and that you know you can do these things. |
|||
|
|||
To protect your rights, we need to prevent others from denying you |
|||
these rights or asking you to surrender the rights. Therefore, you have |
|||
certain responsibilities if you distribute copies of the software, or if |
|||
you modify it: responsibilities to respect the freedom of others. |
|||
|
|||
For example, if you distribute copies of such a program, whether |
|||
gratis or for a fee, you must pass on to the recipients the same |
|||
freedoms that you received. You must make sure that they, too, receive |
|||
or can get the source code. And you must show them these terms so they |
|||
know their rights. |
|||
|
|||
Developers that use the GNU GPL protect your rights with two steps: |
|||
(1) assert copyright on the software, and (2) offer you this License |
|||
giving you legal permission to copy, distribute and/or modify it. |
|||
|
|||
For the developers' and authors' protection, the GPL clearly explains |
|||
that there is no warranty for this free software. For both users' and |
|||
authors' sake, the GPL requires that modified versions be marked as |
|||
changed, so that their problems will not be attributed erroneously to |
|||
authors of previous versions. |
|||
|
|||
Some devices are designed to deny users access to install or run |
|||
modified versions of the software inside them, although the manufacturer |
|||
can do so. This is fundamentally incompatible with the aim of |
|||
protecting users' freedom to change the software. The systematic |
|||
pattern of such abuse occurs in the area of products for individuals to |
|||
use, which is precisely where it is most unacceptable. Therefore, we |
|||
have designed this version of the GPL to prohibit the practice for those |
|||
products. If such problems arise substantially in other domains, we |
|||
stand ready to extend this provision to those domains in future versions |
|||
of the GPL, as needed to protect the freedom of users. |
|||
|
|||
Finally, every program is threatened constantly by software patents. |
|||
States should not allow patents to restrict development and use of |
|||
software on general-purpose computers, but in those that do, we wish to |
|||
avoid the special danger that patents applied to a free program could |
|||
make it effectively proprietary. To prevent this, the GPL assures that |
|||
patents cannot be used to render the program non-free. |
|||
|
|||
The precise terms and conditions for copying, distribution and |
|||
modification follow. |
|||
|
|||
TERMS AND CONDITIONS |
|||
|
|||
0. Definitions. |
|||
|
|||
"This License" refers to version 3 of the GNU General Public License. |
|||
|
|||
"Copyright" also means copyright-like laws that apply to other kinds of |
|||
works, such as semiconductor masks. |
|||
|
|||
"The Program" refers to any copyrightable work licensed under this |
|||
License. Each licensee is addressed as "you". "Licensees" and |
|||
"recipients" may be individuals or organizations. |
|||
|
|||
To "modify" a work means to copy from or adapt all or part of the work |
|||
in a fashion requiring copyright permission, other than the making of an |
|||
exact copy. The resulting work is called a "modified version" of the |
|||
earlier work or a work "based on" the earlier work. |
|||
|
|||
A "covered work" means either the unmodified Program or a work based |
|||
on the Program. |
|||
|
|||
To "propagate" a work means to do anything with it that, without |
|||
permission, would make you directly or secondarily liable for |
|||
infringement under applicable copyright law, except executing it on a |
|||
computer or modifying a private copy. Propagation includes copying, |
|||
distribution (with or without modification), making available to the |
|||
public, and in some countries other activities as well. |
|||
|
|||
To "convey" a work means any kind of propagation that enables other |
|||
parties to make or receive copies. Mere interaction with a user through |
|||
a computer network, with no transfer of a copy, is not conveying. |
|||
|
|||
An interactive user interface displays "Appropriate Legal Notices" |
|||
to the extent that it includes a convenient and prominently visible |
|||
feature that (1) displays an appropriate copyright notice, and (2) |
|||
tells the user that there is no warranty for the work (except to the |
|||
extent that warranties are provided), that licensees may convey the |
|||
work under this License, and how to view a copy of this License. If |
|||
the interface presents a list of user commands or options, such as a |
|||
menu, a prominent item in the list meets this criterion. |
|||
|
|||
1. Source Code. |
|||
|
|||
The "source code" for a work means the preferred form of the work |
|||
for making modifications to it. "Object code" means any non-source |
|||
form of a work. |
|||
|
|||
A "Standard Interface" means an interface that either is an official |
|||
standard defined by a recognized standards body, or, in the case of |
|||
interfaces specified for a particular programming language, one that |
|||
is widely used among developers working in that language. |
|||
|
|||
The "System Libraries" of an executable work include anything, other |
|||
than the work as a whole, that (a) is included in the normal form of |
|||
packaging a Major Component, but which is not part of that Major |
|||
Component, and (b) serves only to enable use of the work with that |
|||
Major Component, or to implement a Standard Interface for which an |
|||
implementation is available to the public in source code form. A |
|||
"Major Component", in this context, means a major essential component |
|||
(kernel, window system, and so on) of the specific operating system |
|||
(if any) on which the executable work runs, or a compiler used to |
|||
produce the work, or an object code interpreter used to run it. |
|||
|
|||
The "Corresponding Source" for a work in object code form means all |
|||
the source code needed to generate, install, and (for an executable |
|||
work) run the object code and to modify the work, including scripts to |
|||
control those activities. However, it does not include the work's |
|||
System Libraries, or general-purpose tools or generally available free |
|||
programs which are used unmodified in performing those activities but |
|||
which are not part of the work. For example, Corresponding Source |
|||
includes interface definition files associated with source files for |
|||
the work, and the source code for shared libraries and dynamically |
|||
linked subprograms that the work is specifically designed to require, |
|||
such as by intimate data communication or control flow between those |
|||
subprograms and other parts of the work. |
|||
|
|||
The Corresponding Source need not include anything that users |
|||
can regenerate automatically from other parts of the Corresponding |
|||
Source. |
|||
|
|||
The Corresponding Source for a work in source code form is that |
|||
same work. |
|||
|
|||
2. Basic Permissions. |
|||
|
|||
All rights granted under this License are granted for the term of |
|||
copyright on the Program, and are irrevocable provided the stated |
|||
conditions are met. This License explicitly affirms your unlimited |
|||
permission to run the unmodified Program. The output from running a |
|||
covered work is covered by this License only if the output, given its |
|||
content, constitutes a covered work. This License acknowledges your |
|||
rights of fair use or other equivalent, as provided by copyright law. |
|||
|
|||
You may make, run and propagate covered works that you do not |
|||
convey, without conditions so long as your license otherwise remains |
|||
in force. You may convey covered works to others for the sole purpose |
|||
of having them make modifications exclusively for you, or provide you |
|||
with facilities for running those works, provided that you comply with |
|||
the terms of this License in conveying all material for which you do |
|||
not control copyright. Those thus making or running the covered works |
|||
for you must do so exclusively on your behalf, under your direction |
|||
and control, on terms that prohibit them from making any copies of |
|||
your copyrighted material outside their relationship with you. |
|||
|
|||
Conveying under any other circumstances is permitted solely under |
|||
the conditions stated below. Sublicensing is not allowed; section 10 |
|||
makes it unnecessary. |
|||
|
|||
3. Protecting Users' Legal Rights From Anti-Circumvention Law. |
|||
|
|||
No covered work shall be deemed part of an effective technological |
|||
measure under any applicable law fulfilling obligations under article |
|||
11 of the WIPO copyright treaty adopted on 20 December 1996, or |
|||
similar laws prohibiting or restricting circumvention of such |
|||
measures. |
|||
|
|||
When you convey a covered work, you waive any legal power to forbid |
|||
circumvention of technological measures to the extent such circumvention |
|||
is effected by exercising rights under this License with respect to |
|||
the covered work, and you disclaim any intention to limit operation or |
|||
modification of the work as a means of enforcing, against the work's |
|||
users, your or third parties' legal rights to forbid circumvention of |
|||
technological measures. |
|||
|
|||
4. Conveying Verbatim Copies. |
|||
|
|||
You may convey verbatim copies of the Program's source code as you |
|||
receive it, in any medium, provided that you conspicuously and |
|||
appropriately publish on each copy an appropriate copyright notice; |
|||
keep intact all notices stating that this License and any |
|||
non-permissive terms added in accord with section 7 apply to the code; |
|||
keep intact all notices of the absence of any warranty; and give all |
|||
recipients a copy of this License along with the Program. |
|||
|
|||
You may charge any price or no price for each copy that you convey, |
|||
and you may offer support or warranty protection for a fee. |
|||
|
|||
5. Conveying Modified Source Versions. |
|||
|
|||
You may convey a work based on the Program, or the modifications to |
|||
produce it from the Program, in the form of source code under the |
|||
terms of section 4, provided that you also meet all of these conditions: |
|||
|
|||
a) The work must carry prominent notices stating that you modified |
|||
it, and giving a relevant date. |
|||
|
|||
b) The work must carry prominent notices stating that it is |
|||
released under this License and any conditions added under section |
|||
7. This requirement modifies the requirement in section 4 to |
|||
"keep intact all notices". |
|||
|
|||
c) You must license the entire work, as a whole, under this |
|||
License to anyone who comes into possession of a copy. This |
|||
License will therefore apply, along with any applicable section 7 |
|||
additional terms, to the whole of the work, and all its parts, |
|||
regardless of how they are packaged. This License gives no |
|||
permission to license the work in any other way, but it does not |
|||
invalidate such permission if you have separately received it. |
|||
|
|||
d) If the work has interactive user interfaces, each must display |
|||
Appropriate Legal Notices; however, if the Program has interactive |
|||
interfaces that do not display Appropriate Legal Notices, your |
|||
work need not make them do so. |
|||
|
|||
A compilation of a covered work with other separate and independent |
|||
works, which are not by their nature extensions of the covered work, |
|||
and which are not combined with it such as to form a larger program, |
|||
in or on a volume of a storage or distribution medium, is called an |
|||
"aggregate" if the compilation and its resulting copyright are not |
|||
used to limit the access or legal rights of the compilation's users |
|||
beyond what the individual works permit. Inclusion of a covered work |
|||
in an aggregate does not cause this License to apply to the other |
|||
parts of the aggregate. |
|||
|
|||
6. Conveying Non-Source Forms. |
|||
|
|||
You may convey a covered work in object code form under the terms |
|||
of sections 4 and 5, provided that you also convey the |
|||
machine-readable Corresponding Source under the terms of this License, |
|||
in one of these ways: |
|||
|
|||
a) Convey the object code in, or embodied in, a physical product |
|||
(including a physical distribution medium), accompanied by the |
|||
Corresponding Source fixed on a durable physical medium |
|||
customarily used for software interchange. |
|||
|
|||
b) Convey the object code in, or embodied in, a physical product |
|||
(including a physical distribution medium), accompanied by a |
|||
written offer, valid for at least three years and valid for as |
|||
long as you offer spare parts or customer support for that product |
|||
model, to give anyone who possesses the object code either (1) a |
|||
copy of the Corresponding Source for all the software in the |
|||
product that is covered by this License, on a durable physical |
|||
medium customarily used for software interchange, for a price no |
|||
more than your reasonable cost of physically performing this |
|||
conveying of source, or (2) access to copy the |
|||
Corresponding Source from a network server at no charge. |
|||
|
|||
c) Convey individual copies of the object code with a copy of the |
|||
written offer to provide the Corresponding Source. This |
|||
alternative is allowed only occasionally and noncommercially, and |
|||
only if you received the object code with such an offer, in accord |
|||
with subsection 6b. |
|||
|
|||
d) Convey the object code by offering access from a designated |
|||
place (gratis or for a charge), and offer equivalent access to the |
|||
Corresponding Source in the same way through the same place at no |
|||
further charge. You need not require recipients to copy the |
|||
Corresponding Source along with the object code. If the place to |
|||
copy the object code is a network server, the Corresponding Source |
|||
may be on a different server (operated by you or a third party) |
|||
that supports equivalent copying facilities, provided you maintain |
|||
clear directions next to the object code saying where to find the |
|||
Corresponding Source. Regardless of what server hosts the |
|||
Corresponding Source, you remain obligated to ensure that it is |
|||
available for as long as needed to satisfy these requirements. |
|||
|
|||
e) Convey the object code using peer-to-peer transmission, provided |
|||
you inform other peers where the object code and Corresponding |
|||
Source of the work are being offered to the general public at no |
|||
charge under subsection 6d. |
|||
|
|||
A separable portion of the object code, whose source code is excluded |
|||
from the Corresponding Source as a System Library, need not be |
|||
included in conveying the object code work. |
|||
|
|||
A "User Product" is either (1) a "consumer product", which means any |
|||
tangible personal property which is normally used for personal, family, |
|||
or household purposes, or (2) anything designed or sold for incorporation |
|||
into a dwelling. In determining whether a product is a consumer product, |
|||
doubtful cases shall be resolved in favor of coverage. For a particular |
|||
product received by a particular user, "normally used" refers to a |
|||
typical or common use of that class of product, regardless of the status |
|||
of the particular user or of the way in which the particular user |
|||
actually uses, or expects or is expected to use, the product. A product |
|||
is a consumer product regardless of whether the product has substantial |
|||
commercial, industrial or non-consumer uses, unless such uses represent |
|||
the only significant mode of use of the product. |
|||
|
|||
"Installation Information" for a User Product means any methods, |
|||
procedures, authorization keys, or other information required to install |
|||
and execute modified versions of a covered work in that User Product from |
|||
a modified version of its Corresponding Source. The information must |
|||
suffice to ensure that the continued functioning of the modified object |
|||
code is in no case prevented or interfered with solely because |
|||
modification has been made. |
|||
|
|||
If you convey an object code work under this section in, or with, or |
|||
specifically for use in, a User Product, and the conveying occurs as |
|||
part of a transaction in which the right of possession and use of the |
|||
User Product is transferred to the recipient in perpetuity or for a |
|||
fixed term (regardless of how the transaction is characterized), the |
|||
Corresponding Source conveyed under this section must be accompanied |
|||
by the Installation Information. But this requirement does not apply |
|||
if neither you nor any third party retains the ability to install |
|||
modified object code on the User Product (for example, the work has |
|||
been installed in ROM). |
|||
|
|||
The requirement to provide Installation Information does not include a |
|||
requirement to continue to provide support service, warranty, or updates |
|||
for a work that has been modified or installed by the recipient, or for |
|||
the User Product in which it has been modified or installed. Access to a |
|||
network may be denied when the modification itself materially and |
|||
adversely affects the operation of the network or violates the rules and |
|||
protocols for communication across the network. |
|||
|
|||
Corresponding Source conveyed, and Installation Information provided, |
|||
in accord with this section must be in a format that is publicly |
|||
documented (and with an implementation available to the public in |
|||
source code form), and must require no special password or key for |
|||
unpacking, reading or copying. |
|||
|
|||
7. Additional Terms. |
|||
|
|||
"Additional permissions" are terms that supplement the terms of this |
|||
License by making exceptions from one or more of its conditions. |
|||
Additional permissions that are applicable to the entire Program shall |
|||
be treated as though they were included in this License, to the extent |
|||
that they are valid under applicable law. If additional permissions |
|||
apply only to part of the Program, that part may be used separately |
|||
under those permissions, but the entire Program remains governed by |
|||
this License without regard to the additional permissions. |
|||
|
|||
When you convey a copy of a covered work, you may at your option |
|||
remove any additional permissions from that copy, or from any part of |
|||
it. (Additional permissions may be written to require their own |
|||
removal in certain cases when you modify the work.) You may place |
|||
additional permissions on material, added by you to a covered work, |
|||
for which you have or can give appropriate copyright permission. |
|||
|
|||
Notwithstanding any other provision of this License, for material you |
|||
add to a covered work, you may (if authorized by the copyright holders of |
|||
that material) supplement the terms of this License with terms: |
|||
|
|||
a) Disclaiming warranty or limiting liability differently from the |
|||
terms of sections 15 and 16 of this License; or |
|||
|
|||
b) Requiring preservation of specified reasonable legal notices or |
|||
author attributions in that material or in the Appropriate Legal |
|||
Notices displayed by works containing it; or |
|||
|
|||
c) Prohibiting misrepresentation of the origin of that material, or |
|||
requiring that modified versions of such material be marked in |
|||
reasonable ways as different from the original version; or |
|||
|
|||
d) Limiting the use for publicity purposes of names of licensors or |
|||
authors of the material; or |
|||
|
|||
e) Declining to grant rights under trademark law for use of some |
|||
trade names, trademarks, or service marks; or |
|||
|
|||
f) Requiring indemnification of licensors and authors of that |
|||
material by anyone who conveys the material (or modified versions of |
|||
it) with contractual assumptions of liability to the recipient, for |
|||
any liability that these contractual assumptions directly impose on |
|||
those licensors and authors. |
|||
|
|||
All other non-permissive additional terms are considered "further |
|||
restrictions" within the meaning of section 10. If the Program as you |
|||
received it, or any part of it, contains a notice stating that it is |
|||
governed by this License along with a term that is a further |
|||
restriction, you may remove that term. If a license document contains |
|||
a further restriction but permits relicensing or conveying under this |
|||
License, you may add to a covered work material governed by the terms |
|||
of that license document, provided that the further restriction does |
|||
not survive such relicensing or conveying. |
|||
|
|||
If you add terms to a covered work in accord with this section, you |
|||
must place, in the relevant source files, a statement of the |
|||
additional terms that apply to those files, or a notice indicating |
|||
where to find the applicable terms. |
|||
|
|||
Additional terms, permissive or non-permissive, may be stated in the |
|||
form of a separately written license, or stated as exceptions; |
|||
the above requirements apply either way. |
|||
|
|||
8. Termination. |
|||
|
|||
You may not propagate or modify a covered work except as expressly |
|||
provided under this License. Any attempt otherwise to propagate or |
|||
modify it is void, and will automatically terminate your rights under |
|||
this License (including any patent licenses granted under the third |
|||
paragraph of section 11). |
|||
|
|||
However, if you cease all violation of this License, then your |
|||
license from a particular copyright holder is reinstated (a) |
|||
provisionally, unless and until the copyright holder explicitly and |
|||
finally terminates your license, and (b) permanently, if the copyright |
|||
holder fails to notify you of the violation by some reasonable means |
|||
prior to 60 days after the cessation. |
|||
|
|||
Moreover, your license from a particular copyright holder is |
|||
reinstated permanently if the copyright holder notifies you of the |
|||
violation by some reasonable means, this is the first time you have |
|||
received notice of violation of this License (for any work) from that |
|||
copyright holder, and you cure the violation prior to 30 days after |
|||
your receipt of the notice. |
|||
|
|||
Termination of your rights under this section does not terminate the |
|||
licenses of parties who have received copies or rights from you under |
|||
this License. If your rights have been terminated and not permanently |
|||
reinstated, you do not qualify to receive new licenses for the same |
|||
material under section 10. |
|||
|
|||
9. Acceptance Not Required for Having Copies. |
|||
|
|||
You are not required to accept this License in order to receive or |
|||
run a copy of the Program. Ancillary propagation of a covered work |
|||
occurring solely as a consequence of using peer-to-peer transmission |
|||
to receive a copy likewise does not require acceptance. However, |
|||
nothing other than this License grants you permission to propagate or |
|||
modify any covered work. These actions infringe copyright if you do |
|||
not accept this License. Therefore, by modifying or propagating a |
|||
covered work, you indicate your acceptance of this License to do so. |
|||
|
|||
10. Automatic Licensing of Downstream Recipients. |
|||
|
|||
Each time you convey a covered work, the recipient automatically |
|||
receives a license from the original licensors, to run, modify and |
|||
propagate that work, subject to this License. You are not responsible |
|||
for enforcing compliance by third parties with this License. |
|||
|
|||
An "entity transaction" is a transaction transferring control of an |
|||
organization, or substantially all assets of one, or subdividing an |
|||
organization, or merging organizations. If propagation of a covered |
|||
work results from an entity transaction, each party to that |
|||
transaction who receives a copy of the work also receives whatever |
|||
licenses to the work the party's predecessor in interest had or could |
|||
give under the previous paragraph, plus a right to possession of the |
|||
Corresponding Source of the work from the predecessor in interest, if |
|||
the predecessor has it or can get it with reasonable efforts. |
|||
|
|||
You may not impose any further restrictions on the exercise of the |
|||
rights granted or affirmed under this License. For example, you may |
|||
not impose a license fee, royalty, or other charge for exercise of |
|||
rights granted under this License, and you may not initiate litigation |
|||
(including a cross-claim or counterclaim in a lawsuit) alleging that |
|||
any patent claim is infringed by making, using, selling, offering for |
|||
sale, or importing the Program or any portion of it. |
|||
|
|||
11. Patents. |
|||
|
|||
A "contributor" is a copyright holder who authorizes use under this |
|||
License of the Program or a work on which the Program is based. The |
|||
work thus licensed is called the contributor's "contributor version". |
|||
|
|||
A contributor's "essential patent claims" are all patent claims |
|||
owned or controlled by the contributor, whether already acquired or |
|||
hereafter acquired, that would be infringed by some manner, permitted |
|||
by this License, of making, using, or selling its contributor version, |
|||
but do not include claims that would be infringed only as a |
|||
consequence of further modification of the contributor version. For |
|||
purposes of this definition, "control" includes the right to grant |
|||
patent sublicenses in a manner consistent with the requirements of |
|||
this License. |
|||
|
|||
Each contributor grants you a non-exclusive, worldwide, royalty-free |
|||
patent license under the contributor's essential patent claims, to |
|||
make, use, sell, offer for sale, import and otherwise run, modify and |
|||
propagate the contents of its contributor version. |
|||
|
|||
In the following three paragraphs, a "patent license" is any express |
|||
agreement or commitment, however denominated, not to enforce a patent |
|||
(such as an express permission to practice a patent or covenant not to |
|||
sue for patent infringement). To "grant" such a patent license to a |
|||
party means to make such an agreement or commitment not to enforce a |
|||
patent against the party. |
|||
|
|||
If you convey a covered work, knowingly relying on a patent license, |
|||
and the Corresponding Source of the work is not available for anyone |
|||
to copy, free of charge and under the terms of this License, through a |
|||
publicly available network server or other readily accessible means, |
|||
then you must either (1) cause the Corresponding Source to be so |
|||
available, or (2) arrange to deprive yourself of the benefit of the |
|||
patent license for this particular work, or (3) arrange, in a manner |
|||
consistent with the requirements of this License, to extend the patent |
|||
license to downstream recipients. "Knowingly relying" means you have |
|||
actual knowledge that, but for the patent license, your conveying the |
|||
covered work in a country, or your recipient's use of the covered work |
|||
in a country, would infringe one or more identifiable patents in that |
|||
country that you have reason to believe are valid. |
|||
|
|||
If, pursuant to or in connection with a single transaction or |
|||
arrangement, you convey, or propagate by procuring conveyance of, a |
|||
covered work, and grant a patent license to some of the parties |
|||
receiving the covered work authorizing them to use, propagate, modify |
|||
or convey a specific copy of the covered work, then the patent license |
|||
you grant is automatically extended to all recipients of the covered |
|||
work and works based on it. |
|||
|
|||
A patent license is "discriminatory" if it does not include within |
|||
the scope of its coverage, prohibits the exercise of, or is |
|||
conditioned on the non-exercise of one or more of the rights that are |
|||
specifically granted under this License. You may not convey a covered |
|||
work if you are a party to an arrangement with a third party that is |
|||
in the business of distributing software, under which you make payment |
|||
to the third party based on the extent of your activity of conveying |
|||
the work, and under which the third party grants, to any of the |
|||
parties who would receive the covered work from you, a discriminatory |
|||
patent license (a) in connection with copies of the covered work |
|||
conveyed by you (or copies made from those copies), or (b) primarily |
|||
for and in connection with specific products or compilations that |
|||
contain the covered work, unless you entered into that arrangement, |
|||
or that patent license was granted, prior to 28 March 2007. |
|||
|
|||
Nothing in this License shall be construed as excluding or limiting |
|||
any implied license or other defenses to infringement that may |
|||
otherwise be available to you under applicable patent law. |
|||
|
|||
12. No Surrender of Others' Freedom. |
|||
|
|||
If conditions are imposed on you (whether by court order, agreement or |
|||
otherwise) that contradict the conditions of this License, they do not |
|||
excuse you from the conditions of this License. If you cannot convey a |
|||
covered work so as to satisfy simultaneously your obligations under this |
|||
License and any other pertinent obligations, then as a consequence you may |
|||
not convey it at all. For example, if you agree to terms that obligate you |
|||
to collect a royalty for further conveying from those to whom you convey |
|||
the Program, the only way you could satisfy both those terms and this |
|||
License would be to refrain entirely from conveying the Program. |
|||
|
|||
13. Use with the GNU Affero General Public License. |
|||
|
|||
Notwithstanding any other provision of this License, you have |
|||
permission to link or combine any covered work with a work licensed |
|||
under version 3 of the GNU Affero General Public License into a single |
|||
combined work, and to convey the resulting work. The terms of this |
|||
License will continue to apply to the part which is the covered work, |
|||
but the special requirements of the GNU Affero General Public License, |
|||
section 13, concerning interaction through a network will apply to the |
|||
combination as such. |
|||
|
|||
14. Revised Versions of this License. |
|||
|
|||
The Free Software Foundation may publish revised and/or new versions of |
|||
the GNU General Public License from time to time. Such new versions will |
|||
be similar in spirit to the present version, but may differ in detail to |
|||
address new problems or concerns. |
|||
|
|||
Each version is given a distinguishing version number. If the |
|||
Program specifies that a certain numbered version of the GNU General |
|||
Public License "or any later version" applies to it, you have the |
|||
option of following the terms and conditions either of that numbered |
|||
version or of any later version published by the Free Software |
|||
Foundation. If the Program does not specify a version number of the |
|||
GNU General Public License, you may choose any version ever published |
|||
by the Free Software Foundation. |
|||
|
|||
If the Program specifies that a proxy can decide which future |
|||
versions of the GNU General Public License can be used, that proxy's |
|||
public statement of acceptance of a version permanently authorizes you |
|||
to choose that version for the Program. |
|||
|
|||
Later license versions may give you additional or different |
|||
permissions. However, no additional obligations are imposed on any |
|||
author or copyright holder as a result of your choosing to follow a |
|||
later version. |
|||
|
|||
15. Disclaimer of Warranty. |
|||
|
|||
THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY |
|||
APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT |
|||
HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY |
|||
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, |
|||
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
|||
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM |
|||
IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF |
|||
ALL NECESSARY SERVICING, REPAIR OR CORRECTION. |
|||
|
|||
16. Limitation of Liability. |
|||
|
|||
IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING |
|||
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS |
|||
THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY |
|||
GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE |
|||
USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF |
|||
DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD |
|||
PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), |
|||
EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF |
|||
SUCH DAMAGES. |
|||
|
|||
17. Interpretation of Sections 15 and 16. |
|||
|
|||
If the disclaimer of warranty and limitation of liability provided |
|||
above cannot be given local legal effect according to their terms, |
|||
reviewing courts shall apply local law that most closely approximates |
|||
an absolute waiver of all civil liability in connection with the |
|||
Program, unless a warranty or assumption of liability accompanies a |
|||
copy of the Program in return for a fee. |
|||
|
|||
END OF TERMS AND CONDITIONS |
|||
|
|||
How to Apply These Terms to Your New Programs |
|||
|
|||
If you develop a new program, and you want it to be of the greatest |
|||
possible use to the public, the best way to achieve this is to make it |
|||
free software which everyone can redistribute and change under these terms. |
|||
|
|||
To do so, attach the following notices to the program. It is safest |
|||
to attach them to the start of each source file to most effectively |
|||
state the exclusion of warranty; and each file should have at least |
|||
the "copyright" line and a pointer to where the full notice is found. |
|||
|
|||
<one line to give the program's name and a brief idea of what it does.> |
|||
Copyright (C) <year> <name of author> |
|||
|
|||
This program is free software: you can redistribute it and/or modify |
|||
it under the terms of the GNU General Public License as published by |
|||
the Free Software Foundation, either version 3 of the License, or |
|||
(at your option) any later version. |
|||
|
|||
This program is distributed in the hope that it will be useful, |
|||
but WITHOUT ANY WARRANTY; without even the implied warranty of |
|||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
|||
GNU General Public License for more details. |
|||
|
|||
You should have received a copy of the GNU General Public License |
|||
along with this program. If not, see <https://www.gnu.org/licenses/>. |
|||
|
|||
Also add information on how to contact you by electronic and paper mail. |
|||
|
|||
If the program does terminal interaction, make it output a short |
|||
notice like this when it starts in an interactive mode: |
|||
|
|||
<program> Copyright (C) <year> <name of author> |
|||
This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'. |
|||
This is free software, and you are welcome to redistribute it |
|||
under certain conditions; type `show c' for details. |
|||
|
|||
The hypothetical commands `show w' and `show c' should show the appropriate |
|||
parts of the General Public License. Of course, your program's commands |
|||
might be different; for a GUI interface, you would use an "about box". |
|||
|
|||
You should also get your employer (if you work as a programmer) or school, |
|||
if any, to sign a "copyright disclaimer" for the program, if necessary. |
|||
For more information on this, and how to apply and follow the GNU GPL, see |
|||
<https://www.gnu.org/licenses/>. |
|||
|
|||
The GNU General Public License does not permit incorporating your program |
|||
into proprietary programs. If your program is a subroutine library, you |
|||
may consider it more useful to permit linking proprietary applications with |
|||
the library. If this is what you want to do, use the GNU Lesser General |
|||
Public License instead of this License. But first, please read |
|||
<https://www.gnu.org/licenses/why-not-lgpl.html>. |
@ -0,0 +1,186 @@ |
|||
## Bn128 |
|||
Implementation of the bn128 pairing. |
|||
|
|||
|
|||
Implementation followng the information and the implementations from: |
|||
- `Multiplication and Squaring on Pairing-Friendly |
|||
Fields`, Augusto Jun Devegili, Colm Ó hÉigeartaigh, Michael Scott, and Ricardo Dahab https://pdfs.semanticscholar.org/3e01/de88d7428076b2547b60072088507d881bf1.pdf |
|||
- `Optimal Pairings`, Frederik Vercauteren https://www.cosic.esat.kuleuven.be/bcrypt/optimal.pdf , https://eprint.iacr.org/2008/096.pdf |
|||
- `Double-and-Add with Relative Jacobian |
|||
Coordinates`, Björn Fay https://eprint.iacr.org/2014/1014.pdf |
|||
- `Fast and Regular Algorithms for Scalar Multiplication |
|||
over Elliptic Curves`, Matthieu Rivain https://eprint.iacr.org/2011/338.pdf |
|||
- `High-Speed Software Implementation of the Optimal Ate Pairing over Barreto–Naehrig Curves`, Jean-Luc Beuchat, Jorge E. González-Díaz, Shigeo Mitsunari, Eiji Okamoto, Francisco Rodríguez-Henríquez, and Tadanori Teruya https://eprint.iacr.org/2010/354.pdf |
|||
- `New software speed records for cryptographic pairings`, Michael Naehrig, Ruben Niederhagen, Peter Schwabe https://cryptojedi.org/papers/dclxvi-20100714.pdf |
|||
- `Implementing Cryptographic Pairings over Barreto-Naehrig Curves`, Augusto Jun Devegili, Michael Scott, Ricardo Dahab https://eprint.iacr.org/2007/390.pdf |
|||
- https://github.com/zcash/zcash/tree/master/src/snark |
|||
- https://github.com/iden3/snarkjs |
|||
- https://github.com/ethereum/py_ecc/tree/master/py_ecc/bn128 |
|||
|
|||
- [x] Fq, Fq2, Fq6, Fq12 operations |
|||
- [x] G1, G2 operations |
|||
- [x] preparePairing |
|||
- [x] PreComupteG1, PreComupteG2 |
|||
- [x] DoubleStep, AddStep |
|||
- [x] MillerLoop |
|||
- [x] Pairing |
|||
|
|||
### Installation |
|||
``` |
|||
go get github.com/arnaucube/bn128 |
|||
``` |
|||
|
|||
#### Usage |
|||
|
|||
- Pairing |
|||
```go |
|||
bn128, err := NewBn128() |
|||
assert.Nil(t, err) |
|||
|
|||
big25 := big.NewInt(int64(25)) |
|||
big30 := big.NewInt(int64(30)) |
|||
|
|||
g1a := bn128.G1.MulScalar(bn128.G1.G, big25) |
|||
g2a := bn128.G2.MulScalar(bn128.G2.G, big30) |
|||
|
|||
g1b := bn128.G1.MulScalar(bn128.G1.G, big30) |
|||
g2b := bn128.G2.MulScalar(bn128.G2.G, big25) |
|||
|
|||
pA, err := bn128.Pairing(g1a, g2a) |
|||
assert.Nil(t, err) |
|||
pB, err := bn128.Pairing(g1b, g2b) |
|||
assert.Nil(t, err) |
|||
assert.True(t, bn128.Fq12.Equal(pA, pB)) |
|||
``` |
|||
|
|||
#### Test |
|||
``` |
|||
go test -v |
|||
``` |
|||
|
|||
##### Internal operations more deeply |
|||
|
|||
First let's assume that we have these three basic functions to convert integer compositions to big integer compositions: |
|||
```go |
|||
func iToBig(a int) *big.Int { |
|||
return big.NewInt(int64(a)) |
|||
} |
|||
|
|||
func iiToBig(a, b int) [2]*big.Int { |
|||
return [2]*big.Int{iToBig(a), iToBig(b)} |
|||
} |
|||
|
|||
func iiiToBig(a, b int) [2]*big.Int { |
|||
return [2]*big.Int{iToBig(a), iToBig(b)} |
|||
} |
|||
``` |
|||
- Finite Fields (1, 2, 6, 12) operations |
|||
```go |
|||
// new finite field of order 1 |
|||
fq1 := NewFq(iToBig(7)) |
|||
|
|||
// basic operations of finite field 1 |
|||
res := fq1.Add(iToBig(4), iToBig(4)) |
|||
res = fq1.Double(iToBig(5)) |
|||
res = fq1.Sub(iToBig(5), iToBig(7)) |
|||
res = fq1.Neg(iToBig(5)) |
|||
res = fq1.Mul(iToBig(5), iToBig(11)) |
|||
res = fq1.Inverse(iToBig(4)) |
|||
res = fq1.Square(iToBig(5)) |
|||
|
|||
// new finite field of order 2 |
|||
nonResidueFq2str := "-1" // i/j |
|||
nonResidueFq2, ok := new(big.Int).SetString(nonResidueFq2str, 10) |
|||
fq2 := Fq2{fq1, nonResidueFq2} |
|||
nonResidueFq6 := iiToBig(9, 1) |
|||
|
|||
// basic operations of finite field of order 2 |
|||
res := fq2.Add(iiToBig(4, 4), iiToBig(3, 4)) |
|||
res = fq2.Double(iiToBig(5, 3)) |
|||
res = fq2.Sub(iiToBig(5, 3), iiToBig(7, 2)) |
|||
res = fq2.Neg(iiToBig(4, 4)) |
|||
res = fq2.Mul(iiToBig(4, 4), iiToBig(3, 4)) |
|||
res = fq2.Inverse(iiToBig(4, 4)) |
|||
res = fq2.Div(iiToBig(4, 4), iiToBig(3, 4)) |
|||
res = fq2.Square(iiToBig(4, 4)) |
|||
|
|||
|
|||
// new finite field of order 6 |
|||
nonResidueFq6 := iiToBig(9, 1) // TODO |
|||
fq6 := Fq6{fq2, nonResidueFq6} |
|||
|
|||
// define two new values of Finite Field 6, in order to be able to perform the operations |
|||
a := [3][2]*big.Int{ |
|||
iiToBig(1, 2), |
|||
iiToBig(3, 4), |
|||
iiToBig(5, 6)} |
|||
b := [3][2]*big.Int{ |
|||
iiToBig(12, 11), |
|||
iiToBig(10, 9), |
|||
iiToBig(8, 7)} |
|||
|
|||
// basic operations of finite field order 6 |
|||
res := fq6.Add(a, b) |
|||
res = fq6.Sub(a, b) |
|||
res = fq6.Mul(a, b) |
|||
divRes := fq6.Div(mulRes, b) |
|||
|
|||
|
|||
// new finite field of order 12 |
|||
q, ok := new(big.Int).SetString("21888242871839275222246405745257275088696311157297823662689037894645226208583", 10) // i |
|||
if !ok { |
|||
fmt.Println("error parsing string to big integer") |
|||
} |
|||
|
|||
fq1 := NewFq(q) |
|||
nonResidueFq2, ok := new(big.Int).SetString("21888242871839275222246405745257275088696311157297823662689037894645226208582", 10) // i |
|||
assert.True(t, ok) |
|||
nonResidueFq6 := iiToBig(9, 1) |
|||
|
|||
fq2 := Fq2{fq1, nonResidueFq2} |
|||
fq6 := Fq6{fq2, nonResidueFq6} |
|||
fq12 := Fq12{fq6, fq2, nonResidueFq6} |
|||
|
|||
``` |
|||
|
|||
- G1 operations |
|||
```go |
|||
bn128, err := NewBn128() |
|||
assert.Nil(t, err) |
|||
|
|||
r1 := big.NewInt(int64(33)) |
|||
r2 := big.NewInt(int64(44)) |
|||
|
|||
gr1 := bn128.G1.MulScalar(bn128.G1.G, bn128.Fq1.Copy(r1)) |
|||
gr2 := bn128.G1.MulScalar(bn128.G1.G, bn128.Fq1.Copy(r2)) |
|||
|
|||
grsum1 := bn128.G1.Add(gr1, gr2) |
|||
r1r2 := bn128.Fq1.Add(r1, r2) |
|||
grsum2 := bn128.G1.MulScalar(bn128.G1.G, r1r2) |
|||
|
|||
a := bn128.G1.Affine(grsum1) |
|||
b := bn128.G1.Affine(grsum2) |
|||
assert.Equal(t, a, b) |
|||
assert.Equal(t, "0x2f978c0ab89ebaa576866706b14787f360c4d6c3869efe5a72f7c3651a72ff00", utils.BytesToHex(a[0].Bytes())) |
|||
assert.Equal(t, "0x12e4ba7f0edca8b4fa668fe153aebd908d322dc26ad964d4cd314795844b62b2", utils.BytesToHex(a[1].Bytes())) |
|||
``` |
|||
|
|||
- G2 operations |
|||
```go |
|||
bn128, err := NewBn128() |
|||
assert.Nil(t, err) |
|||
|
|||
r1 := big.NewInt(int64(33)) |
|||
r2 := big.NewInt(int64(44)) |
|||
|
|||
gr1 := bn128.G2.MulScalar(bn128.G2.G, bn128.Fq1.Copy(r1)) |
|||
gr2 := bn128.G2.MulScalar(bn128.G2.G, bn128.Fq1.Copy(r2)) |
|||
|
|||
grsum1 := bn128.G2.Add(gr1, gr2) |
|||
r1r2 := bn128.Fq1.Add(r1, r2) |
|||
grsum2 := bn128.G2.MulScalar(bn128.G2.G, r1r2) |
|||
|
|||
a := bn128.G2.Affine(grsum1) |
|||
b := bn128.G2.Affine(grsum2) |
|||
assert.Equal(t, a, b) |
|||
``` |
@ -0,0 +1,407 @@ |
|||
package bn128 |
|||
|
|||
import ( |
|||
"bytes" |
|||
"errors" |
|||
"math/big" |
|||
) |
|||
|
|||
type Bn128 struct { |
|||
Q *big.Int |
|||
Gg1 [2]*big.Int |
|||
Gg2 [2][2]*big.Int |
|||
NonResidueFq2 *big.Int |
|||
NonResidueFq6 [2]*big.Int |
|||
Fq1 Fq |
|||
Fq2 Fq2 |
|||
Fq6 Fq6 |
|||
Fq12 Fq12 |
|||
G1 G1 |
|||
G2 G2 |
|||
LoopCount *big.Int |
|||
LoopCountNeg bool |
|||
|
|||
TwoInv *big.Int |
|||
CoefB *big.Int |
|||
TwistCoefB [2]*big.Int |
|||
Twist [2]*big.Int |
|||
FrobeniusCoeffsC11 *big.Int |
|||
TwistMulByQX [2]*big.Int |
|||
TwistMulByQY [2]*big.Int |
|||
FinalExp *big.Int |
|||
} |
|||
|
|||
func NewBn128() (Bn128, error) { |
|||
var b Bn128 |
|||
q, ok := new(big.Int).SetString("21888242871839275222246405745257275088696311157297823662689037894645226208583", 10) // i
|
|||
if !ok { |
|||
return b, errors.New("err with q") |
|||
} |
|||
b.Q = q |
|||
|
|||
b.Gg1 = [2]*big.Int{ |
|||
big.NewInt(int64(1)), |
|||
big.NewInt(int64(2)), |
|||
} |
|||
|
|||
g2_00, ok := new(big.Int).SetString("10857046999023057135944570762232829481370756359578518086990519993285655852781", 10) |
|||
if !ok { |
|||
return b, errors.New("err with g2_00") |
|||
} |
|||
g2_01, ok := new(big.Int).SetString("11559732032986387107991004021392285783925812861821192530917403151452391805634", 10) |
|||
if !ok { |
|||
return b, errors.New("err with g2_00") |
|||
} |
|||
g2_10, ok := new(big.Int).SetString("8495653923123431417604973247489272438418190587263600148770280649306958101930", 10) |
|||
if !ok { |
|||
return b, errors.New("err with g2_00") |
|||
} |
|||
g2_11, ok := new(big.Int).SetString("4082367875863433681332203403145435568316851327593401208105741076214120093531", 10) |
|||
if !ok { |
|||
return b, errors.New("err with g2_00") |
|||
} |
|||
|
|||
b.Gg2 = [2][2]*big.Int{ |
|||
[2]*big.Int{ |
|||
g2_00, |
|||
g2_01, |
|||
}, |
|||
[2]*big.Int{ |
|||
g2_10, |
|||
g2_11, |
|||
}, |
|||
} |
|||
|
|||
b.Fq1 = NewFq(q) |
|||
b.NonResidueFq2, ok = new(big.Int).SetString("21888242871839275222246405745257275088696311157297823662689037894645226208582", 10) // i
|
|||
if !ok { |
|||
return b, errors.New("err with nonResidueFq2") |
|||
} |
|||
b.NonResidueFq6 = [2]*big.Int{ |
|||
big.NewInt(int64(9)), |
|||
big.NewInt(int64(1)), |
|||
} |
|||
|
|||
b.Fq2 = NewFq2(b.Fq1, b.NonResidueFq2) |
|||
b.Fq6 = NewFq6(b.Fq2, b.NonResidueFq6) |
|||
b.Fq12 = NewFq12(b.Fq6, b.Fq2, b.NonResidueFq6) |
|||
|
|||
b.G1 = NewG1(b.Fq1, b.Gg1) |
|||
b.G2 = NewG2(b.Fq2, b.Gg2) |
|||
|
|||
err := b.preparePairing() |
|||
if err != nil { |
|||
return b, err |
|||
} |
|||
|
|||
return b, nil |
|||
} |
|||
|
|||
func BigIsOdd(n *big.Int) bool { |
|||
one := big.NewInt(int64(1)) |
|||
and := new(big.Int).And(n, one) |
|||
return bytes.Equal(and.Bytes(), big.NewInt(int64(1)).Bytes()) |
|||
} |
|||
|
|||
func (bn128 *Bn128) preparePairing() error { |
|||
var ok bool |
|||
bn128.LoopCount, ok = new(big.Int).SetString("29793968203157093288", 10) |
|||
if !ok { |
|||
return errors.New("err with LoopCount from string") |
|||
} |
|||
|
|||
bn128.LoopCountNeg = false |
|||
|
|||
bn128.TwoInv = bn128.Fq1.Inverse(big.NewInt(int64(2))) |
|||
|
|||
bn128.CoefB = big.NewInt(int64(3)) |
|||
bn128.Twist = [2]*big.Int{ |
|||
big.NewInt(int64(9)), |
|||
big.NewInt(int64(1)), |
|||
} |
|||
bn128.TwistCoefB = bn128.Fq2.MulScalar(bn128.Fq2.Inverse(bn128.Twist), bn128.CoefB) |
|||
|
|||
bn128.FrobeniusCoeffsC11, ok = new(big.Int).SetString("21888242871839275222246405745257275088696311157297823662689037894645226208582", 10) |
|||
if !ok { |
|||
return errors.New("error parsing frobeniusCoeffsC11") |
|||
} |
|||
|
|||
a, ok := new(big.Int).SetString("21575463638280843010398324269430826099269044274347216827212613867836435027261", 10) |
|||
if !ok { |
|||
return errors.New("error parsing a") |
|||
} |
|||
b, ok := new(big.Int).SetString("10307601595873709700152284273816112264069230130616436755625194854815875713954", 10) |
|||
if !ok { |
|||
return errors.New("error parsing b") |
|||
} |
|||
bn128.TwistMulByQX = [2]*big.Int{ |
|||
a, |
|||
b, |
|||
} |
|||
|
|||
a, ok = new(big.Int).SetString("2821565182194536844548159561693502659359617185244120367078079554186484126554", 10) |
|||
if !ok { |
|||
return errors.New("error parsing a") |
|||
} |
|||
b, ok = new(big.Int).SetString("3505843767911556378687030309984248845540243509899259641013678093033130930403", 10) |
|||
if !ok { |
|||
return errors.New("error parsing b") |
|||
} |
|||
bn128.TwistMulByQY = [2]*big.Int{ |
|||
a, |
|||
b, |
|||
} |
|||
|
|||
bn128.FinalExp, ok = new(big.Int).SetString("552484233613224096312617126783173147097382103762957654188882734314196910839907541213974502761540629817009608548654680343627701153829446747810907373256841551006201639677726139946029199968412598804882391702273019083653272047566316584365559776493027495458238373902875937659943504873220554161550525926302303331747463515644711876653177129578303191095900909191624817826566688241804408081892785725967931714097716709526092261278071952560171111444072049229123565057483750161460024353346284167282452756217662335528813519139808291170539072125381230815729071544861602750936964829313608137325426383735122175229541155376346436093930287402089517426973178917569713384748081827255472576937471496195752727188261435633271238710131736096299798168852925540549342330775279877006784354801422249722573783561685179618816480037695005515426162362431072245638324744480", 10) |
|||
if !ok { |
|||
return errors.New("error parsing finalExp") |
|||
} |
|||
|
|||
return nil |
|||
|
|||
} |
|||
|
|||
func (bn128 Bn128) Pairing(p1 [3]*big.Int, p2 [3][2]*big.Int) ([2][3][2]*big.Int, error) { |
|||
pre1 := bn128.PreComputeG1(p1) |
|||
pre2, err := bn128.PreComputeG2(p2) |
|||
if err != nil { |
|||
return [2][3][2]*big.Int{}, err |
|||
} |
|||
|
|||
r1 := bn128.MillerLoop(pre1, pre2) |
|||
res := bn128.FinalExponentiation(r1) |
|||
return res, nil |
|||
} |
|||
|
|||
type AteG1Precomp struct { |
|||
Px *big.Int |
|||
Py *big.Int |
|||
} |
|||
|
|||
func (bn128 Bn128) PreComputeG1(p [3]*big.Int) AteG1Precomp { |
|||
pCopy := bn128.G1.Affine(p) |
|||
res := AteG1Precomp{ |
|||
Px: pCopy[0], |
|||
Py: pCopy[1], |
|||
} |
|||
return res |
|||
} |
|||
|
|||
type EllCoeffs struct { |
|||
Ell0 [2]*big.Int |
|||
EllVW [2]*big.Int |
|||
EllVV [2]*big.Int |
|||
} |
|||
type AteG2Precomp struct { |
|||
Qx [2]*big.Int |
|||
Qy [2]*big.Int |
|||
Coeffs []EllCoeffs |
|||
} |
|||
|
|||
func (bn128 Bn128) PreComputeG2(p [3][2]*big.Int) (AteG2Precomp, error) { |
|||
qCopy := bn128.G2.Affine(p) |
|||
res := AteG2Precomp{ |
|||
qCopy[0], |
|||
qCopy[1], |
|||
[]EllCoeffs{}, |
|||
} |
|||
r := [3][2]*big.Int{ |
|||
bn128.Fq2.Copy(qCopy[0]), |
|||
bn128.Fq2.Copy(qCopy[1]), |
|||
bn128.Fq2.One(), |
|||
} |
|||
var c EllCoeffs |
|||
for i := bn128.LoopCount.BitLen() - 2; i >= 0; i-- { |
|||
bit := bn128.LoopCount.Bit(i) |
|||
|
|||
c, r = bn128.DoublingStep(r) |
|||
res.Coeffs = append(res.Coeffs, c) |
|||
if bit == 1 { |
|||
c, r = bn128.MixedAdditionStep(qCopy, r) |
|||
res.Coeffs = append(res.Coeffs, c) |
|||
} |
|||
} |
|||
|
|||
q1 := bn128.G2.Affine(bn128.G2MulByQ(qCopy)) |
|||
if !bn128.Fq2.Equal(q1[2], bn128.Fq2.One()) { |
|||
return res, errors.New("q1[2] != Fq2.One") |
|||
} |
|||
q2 := bn128.G2.Affine(bn128.G2MulByQ(q1)) |
|||
if !bn128.Fq2.Equal(q2[2], bn128.Fq2.One()) { |
|||
return res, errors.New("q2[2] != Fq2.One") |
|||
} |
|||
|
|||
if bn128.LoopCountNeg { |
|||
r[1] = bn128.Fq2.Neg(r[1]) |
|||
} |
|||
q2[1] = bn128.Fq2.Neg(q2[1]) |
|||
|
|||
c, r = bn128.MixedAdditionStep(q1, r) |
|||
res.Coeffs = append(res.Coeffs, c) |
|||
|
|||
c, r = bn128.MixedAdditionStep(q2, r) |
|||
res.Coeffs = append(res.Coeffs, c) |
|||
|
|||
return res, nil |
|||
} |
|||
|
|||
func (bn128 Bn128) DoublingStep(current [3][2]*big.Int) (EllCoeffs, [3][2]*big.Int) { |
|||
x := current[0] |
|||
y := current[1] |
|||
z := current[2] |
|||
|
|||
a := bn128.Fq2.MulScalar(bn128.Fq2.Mul(x, y), bn128.TwoInv) |
|||
b := bn128.Fq2.Square(y) |
|||
c := bn128.Fq2.Square(z) |
|||
d := bn128.Fq2.Add(c, bn128.Fq2.Add(c, c)) |
|||
e := bn128.Fq2.Mul(bn128.TwistCoefB, d) |
|||
f := bn128.Fq2.Add(e, bn128.Fq2.Add(e, e)) |
|||
g := bn128.Fq2.MulScalar(bn128.Fq2.Add(b, f), bn128.TwoInv) |
|||
h := bn128.Fq2.Sub( |
|||
bn128.Fq2.Square(bn128.Fq2.Add(y, z)), |
|||
bn128.Fq2.Add(b, c)) |
|||
i := bn128.Fq2.Sub(e, b) |
|||
j := bn128.Fq2.Square(x) |
|||
eSqr := bn128.Fq2.Square(e) |
|||
current[0] = bn128.Fq2.Mul(a, bn128.Fq2.Sub(b, f)) |
|||
current[1] = bn128.Fq2.Sub(bn128.Fq2.Sub(bn128.Fq2.Square(g), eSqr), |
|||
bn128.Fq2.Add(eSqr, eSqr)) |
|||
current[2] = bn128.Fq2.Mul(b, h) |
|||
res := EllCoeffs{ |
|||
Ell0: bn128.Fq2.Mul(i, bn128.Twist), |
|||
EllVW: bn128.Fq2.Neg(h), |
|||
EllVV: bn128.Fq2.Add(j, bn128.Fq2.Add(j, j)), |
|||
} |
|||
|
|||
return res, current |
|||
} |
|||
|
|||
func (bn128 Bn128) MixedAdditionStep(base, current [3][2]*big.Int) (EllCoeffs, [3][2]*big.Int) { |
|||
x1 := current[0] |
|||
y1 := current[1] |
|||
z1 := current[2] |
|||
x2 := base[0] |
|||
y2 := base[1] |
|||
|
|||
d := bn128.Fq2.Sub(x1, bn128.Fq2.Mul(x2, z1)) |
|||
e := bn128.Fq2.Sub(y1, bn128.Fq2.Mul(y2, z1)) |
|||
f := bn128.Fq2.Square(d) |
|||
g := bn128.Fq2.Square(e) |
|||
h := bn128.Fq2.Mul(d, f) |
|||
i := bn128.Fq2.Mul(x1, f) |
|||
j := bn128.Fq2.Sub( |
|||
bn128.Fq2.Add(h, bn128.Fq2.Mul(z1, g)), |
|||
bn128.Fq2.Add(i, i)) |
|||
|
|||
current[0] = bn128.Fq2.Mul(d, j) |
|||
current[1] = bn128.Fq2.Sub( |
|||
bn128.Fq2.Mul(e, bn128.Fq2.Sub(i, j)), |
|||
bn128.Fq2.Mul(h, y1)) |
|||
current[2] = bn128.Fq2.Mul(z1, h) |
|||
|
|||
coef := EllCoeffs{ |
|||
Ell0: bn128.Fq2.Mul( |
|||
bn128.Twist, |
|||
bn128.Fq2.Sub( |
|||
bn128.Fq2.Mul(e, x2), |
|||
bn128.Fq2.Mul(d, y2))), |
|||
EllVW: d, |
|||
EllVV: bn128.Fq2.Neg(e), |
|||
} |
|||
return coef, current |
|||
} |
|||
func (bn128 Bn128) G2MulByQ(p [3][2]*big.Int) [3][2]*big.Int { |
|||
fmx := [2]*big.Int{ |
|||
p[0][0], |
|||
bn128.Fq1.Mul(p[0][1], bn128.Fq1.Copy(bn128.FrobeniusCoeffsC11)), |
|||
} |
|||
fmy := [2]*big.Int{ |
|||
p[1][0], |
|||
bn128.Fq1.Mul(p[1][1], bn128.Fq1.Copy(bn128.FrobeniusCoeffsC11)), |
|||
} |
|||
fmz := [2]*big.Int{ |
|||
p[2][0], |
|||
bn128.Fq1.Mul(p[2][1], bn128.Fq1.Copy(bn128.FrobeniusCoeffsC11)), |
|||
} |
|||
|
|||
return [3][2]*big.Int{ |
|||
bn128.Fq2.Mul(bn128.TwistMulByQX, fmx), |
|||
bn128.Fq2.Mul(bn128.TwistMulByQY, fmy), |
|||
fmz, |
|||
} |
|||
} |
|||
|
|||
func (bn128 Bn128) MillerLoop(pre1 AteG1Precomp, pre2 AteG2Precomp) [2][3][2]*big.Int { |
|||
// https://cryptojedi.org/papers/dclxvi-20100714.pdf
|
|||
// https://eprint.iacr.org/2008/096.pdf
|
|||
|
|||
idx := 0 |
|||
var c EllCoeffs |
|||
f := bn128.Fq12.One() |
|||
|
|||
for i := bn128.LoopCount.BitLen() - 2; i >= 0; i-- { |
|||
bit := bn128.LoopCount.Bit(i) |
|||
|
|||
c = pre2.Coeffs[idx] |
|||
idx++ |
|||
f = bn128.Fq12.Square(f) |
|||
|
|||
f = bn128.MulBy024(f, |
|||
c.Ell0, |
|||
bn128.Fq2.MulScalar(c.EllVW, pre1.Py), |
|||
bn128.Fq2.MulScalar(c.EllVV, pre1.Px)) |
|||
|
|||
if bit == 1 { |
|||
c = pre2.Coeffs[idx] |
|||
idx++ |
|||
f = bn128.MulBy024( |
|||
f, |
|||
c.Ell0, |
|||
bn128.Fq2.MulScalar(c.EllVW, pre1.Py), |
|||
bn128.Fq2.MulScalar(c.EllVV, pre1.Px)) |
|||
} |
|||
} |
|||
if bn128.LoopCountNeg { |
|||
f = bn128.Fq12.Inverse(f) |
|||
} |
|||
|
|||
c = pre2.Coeffs[idx] |
|||
idx++ |
|||
f = bn128.MulBy024( |
|||
f, |
|||
c.Ell0, |
|||
bn128.Fq2.MulScalar(c.EllVW, pre1.Py), |
|||
bn128.Fq2.MulScalar(c.EllVV, pre1.Px)) |
|||
|
|||
c = pre2.Coeffs[idx] |
|||
idx++ |
|||
|
|||
f = bn128.MulBy024( |
|||
f, |
|||
c.Ell0, |
|||
bn128.Fq2.MulScalar(c.EllVW, pre1.Py), |
|||
bn128.Fq2.MulScalar(c.EllVV, pre1.Px)) |
|||
|
|||
return f |
|||
} |
|||
|
|||
func (bn128 Bn128) MulBy024(a [2][3][2]*big.Int, ell0, ellVW, ellVV [2]*big.Int) [2][3][2]*big.Int { |
|||
b := [2][3][2]*big.Int{ |
|||
[3][2]*big.Int{ |
|||
ell0, |
|||
bn128.Fq2.Zero(), |
|||
ellVV, |
|||
}, |
|||
[3][2]*big.Int{ |
|||
bn128.Fq2.Zero(), |
|||
ellVW, |
|||
bn128.Fq2.Zero(), |
|||
}, |
|||
} |
|||
return bn128.Fq12.Mul(a, b) |
|||
} |
|||
|
|||
func (bn128 Bn128) FinalExponentiation(r [2][3][2]*big.Int) [2][3][2]*big.Int { |
|||
res := bn128.Fq12.Exp(r, bn128.FinalExp) |
|||
return res |
|||
} |
@ -0,0 +1,66 @@ |
|||
package bn128 |
|||
|
|||
import ( |
|||
"math/big" |
|||
"testing" |
|||
|
|||
"github.com/stretchr/testify/assert" |
|||
) |
|||
|
|||
func TestBN128(t *testing.T) { |
|||
bn128, err := NewBn128() |
|||
assert.Nil(t, err) |
|||
|
|||
big40 := big.NewInt(int64(40)) |
|||
big75 := big.NewInt(int64(75)) |
|||
|
|||
g1a := bn128.G1.MulScalar(bn128.G1.G, bn128.Fq1.Copy(big40)) |
|||
g2a := bn128.G2.MulScalar(bn128.G2.G, bn128.Fq1.Copy(big75)) |
|||
|
|||
g1b := bn128.G1.MulScalar(bn128.G1.G, bn128.Fq1.Copy(big75)) |
|||
g2b := bn128.G2.MulScalar(bn128.G2.G, bn128.Fq1.Copy(big40)) |
|||
|
|||
pre1a := bn128.PreComputeG1(g1a) |
|||
pre2a, err := bn128.PreComputeG2(g2a) |
|||
assert.Nil(t, err) |
|||
pre1b := bn128.PreComputeG1(g1b) |
|||
pre2b, err := bn128.PreComputeG2(g2b) |
|||
assert.Nil(t, err) |
|||
|
|||
r1 := bn128.MillerLoop(pre1a, pre2a) |
|||
r2 := bn128.MillerLoop(pre1b, pre2b) |
|||
|
|||
rbe := bn128.Fq12.Mul(r1, bn128.Fq12.Inverse(r2)) |
|||
|
|||
res := bn128.FinalExponentiation(rbe) |
|||
|
|||
a := bn128.Fq12.Affine(res) |
|||
b := bn128.Fq12.Affine(bn128.Fq12.One()) |
|||
|
|||
assert.True(t, bn128.Fq12.Equal(a, b)) |
|||
assert.True(t, bn128.Fq12.Equal(res, bn128.Fq12.One())) |
|||
} |
|||
|
|||
func TestBN128Pairing(t *testing.T) { |
|||
bn128, err := NewBn128() |
|||
assert.Nil(t, err) |
|||
|
|||
big25 := big.NewInt(int64(25)) |
|||
big30 := big.NewInt(int64(30)) |
|||
|
|||
g1a := bn128.G1.MulScalar(bn128.G1.G, big25) |
|||
g2a := bn128.G2.MulScalar(bn128.G2.G, big30) |
|||
|
|||
g1b := bn128.G1.MulScalar(bn128.G1.G, big30) |
|||
g2b := bn128.G2.MulScalar(bn128.G2.G, big25) |
|||
|
|||
pA, err := bn128.Pairing(g1a, g2a) |
|||
assert.Nil(t, err) |
|||
pB, err := bn128.Pairing(g1b, g2b) |
|||
assert.Nil(t, err) |
|||
|
|||
assert.True(t, bn128.Fq12.Equal(pA, pB)) |
|||
|
|||
assert.Equal(t, pA[0][0][0].String(), "73680848340331011700282047627232219336104151861349893575958589557226556635706") |
|||
assert.Equal(t, bn128.Fq12.Affine(pA)[0][0][0].String(), "8016119724813186033542830391460394070015218389456422587891475873290878009957") |
|||
} |
@ -0,0 +1,129 @@ |
|||
package bn128 |
|||
|
|||
import ( |
|||
"bytes" |
|||
"math/big" |
|||
) |
|||
|
|||
// Fq is the Z field over modulus Q
|
|||
type Fq struct { |
|||
Q *big.Int // Q
|
|||
} |
|||
|
|||
// NewFq generates a new Fq
|
|||
func NewFq(q *big.Int) Fq { |
|||
return Fq{ |
|||
q, |
|||
} |
|||
} |
|||
|
|||
// Zero returns a Zero value on the Fq
|
|||
func (fq Fq) Zero() *big.Int { |
|||
return big.NewInt(int64(0)) |
|||
} |
|||
|
|||
// One returns a One value on the Fq
|
|||
func (fq Fq) One() *big.Int { |
|||
return big.NewInt(int64(1)) |
|||
} |
|||
|
|||
// Add performs an addition on the Fq
|
|||
func (fq Fq) Add(a, b *big.Int) *big.Int { |
|||
r := new(big.Int).Add(a, b) |
|||
// return new(big.Int).Mod(r, fq.Q)
|
|||
return r |
|||
} |
|||
|
|||
// Double performs a doubling on the Fq
|
|||
func (fq Fq) Double(a *big.Int) *big.Int { |
|||
r := new(big.Int).Add(a, a) |
|||
// return new(big.Int).Mod(r, fq.Q)
|
|||
return r |
|||
} |
|||
|
|||
// Sub performs a subtraction on the Fq
|
|||
func (fq Fq) Sub(a, b *big.Int) *big.Int { |
|||
r := new(big.Int).Sub(a, b) |
|||
// return new(big.Int).Mod(r, fq.Q)
|
|||
return r |
|||
} |
|||
|
|||
// Neg performs a negation on the Fq
|
|||
func (fq Fq) Neg(a *big.Int) *big.Int { |
|||
m := new(big.Int).Neg(a) |
|||
// return new(big.Int).Mod(m, fq.Q)
|
|||
return m |
|||
} |
|||
|
|||
// Mul performs a multiplication on the Fq
|
|||
func (fq Fq) Mul(a, b *big.Int) *big.Int { |
|||
m := new(big.Int).Mul(a, b) |
|||
return new(big.Int).Mod(m, fq.Q) |
|||
// return m
|
|||
} |
|||
|
|||
func (fq Fq) MulScalar(base, e *big.Int) *big.Int { |
|||
return fq.Mul(base, e) |
|||
} |
|||
|
|||
// Inverse returns the inverse on the Fq
|
|||
func (fq Fq) Inverse(a *big.Int) *big.Int { |
|||
return new(big.Int).ModInverse(a, fq.Q) |
|||
// q := bigCopy(fq.Q)
|
|||
// t := big.NewInt(int64(0))
|
|||
// r := fq.Q
|
|||
// newt := big.NewInt(int64(0))
|
|||
// newr := fq.Affine(a)
|
|||
// for !bytes.Equal(newr.Bytes(), big.NewInt(int64(0)).Bytes()) {
|
|||
// q := new(big.Int).Div(bigCopy(r), bigCopy(newr))
|
|||
//
|
|||
// t = bigCopy(newt)
|
|||
// newt = fq.Sub(t, fq.Mul(q, newt))
|
|||
//
|
|||
// r = bigCopy(newr)
|
|||
// newr = fq.Sub(r, fq.Mul(q, newr))
|
|||
// }
|
|||
// if t.Cmp(big.NewInt(0)) == -1 { // t< 0
|
|||
// t = fq.Add(t, q)
|
|||
// }
|
|||
// return t
|
|||
} |
|||
|
|||
// Square performs a square operation on the Fq
|
|||
func (fq Fq) Square(a *big.Int) *big.Int { |
|||
m := new(big.Int).Mul(a, a) |
|||
return new(big.Int).Mod(m, fq.Q) |
|||
} |
|||
|
|||
func (fq Fq) IsZero(a *big.Int) bool { |
|||
return bytes.Equal(a.Bytes(), fq.Zero().Bytes()) |
|||
} |
|||
|
|||
func (fq Fq) Copy(a *big.Int) *big.Int { |
|||
return new(big.Int).SetBytes(a.Bytes()) |
|||
} |
|||
|
|||
func (fq Fq) Affine(a *big.Int) *big.Int { |
|||
nq := fq.Neg(fq.Q) |
|||
|
|||
aux := a |
|||
if aux.Cmp(big.NewInt(int64(0))) == -1 { // negative value
|
|||
if aux.Cmp(nq) != 1 { // aux less or equal nq
|
|||
aux = new(big.Int).Mod(aux, fq.Q) |
|||
} |
|||
if aux.Cmp(big.NewInt(int64(0))) == -1 { // negative value
|
|||
aux = new(big.Int).Add(aux, fq.Q) |
|||
} |
|||
} else { |
|||
if aux.Cmp(fq.Q) != -1 { // aux greater or equal nq
|
|||
aux = new(big.Int).Mod(aux, fq.Q) |
|||
} |
|||
} |
|||
return aux |
|||
} |
|||
|
|||
func (fq Fq) Equal(a, b *big.Int) bool { |
|||
aAff := fq.Affine(a) |
|||
bAff := fq.Affine(b) |
|||
return bytes.Equal(aAff.Bytes(), bAff.Bytes()) |
|||
} |
@ -0,0 +1,161 @@ |
|||
package bn128 |
|||
|
|||
import ( |
|||
"bytes" |
|||
"math/big" |
|||
) |
|||
|
|||
// Fq12 uses the same algorithms than Fq2, but with [2][3][2]*big.Int data structure
|
|||
|
|||
// Fq12 is Field 12
|
|||
type Fq12 struct { |
|||
F Fq6 |
|||
Fq2 Fq2 |
|||
NonResidue [2]*big.Int |
|||
} |
|||
|
|||
// NewFq12 generates a new Fq12
|
|||
func NewFq12(f Fq6, fq2 Fq2, nonResidue [2]*big.Int) Fq12 { |
|||
fq12 := Fq12{ |
|||
f, |
|||
fq2, |
|||
nonResidue, |
|||
} |
|||
return fq12 |
|||
} |
|||
|
|||
// Zero returns a Zero value on the Fq12
|
|||
func (fq12 Fq12) Zero() [2][3][2]*big.Int { |
|||
return [2][3][2]*big.Int{fq12.F.Zero(), fq12.F.Zero()} |
|||
} |
|||
|
|||
// One returns a One value on the Fq12
|
|||
func (fq12 Fq12) One() [2][3][2]*big.Int { |
|||
return [2][3][2]*big.Int{fq12.F.One(), fq12.F.Zero()} |
|||
} |
|||
|
|||
func (fq12 Fq12) mulByNonResidue(a [3][2]*big.Int) [3][2]*big.Int { |
|||
return [3][2]*big.Int{ |
|||
fq12.Fq2.Mul(fq12.NonResidue, a[2]), |
|||
a[0], |
|||
a[1], |
|||
} |
|||
} |
|||
|
|||
// Add performs an addition on the Fq12
|
|||
func (fq12 Fq12) Add(a, b [2][3][2]*big.Int) [2][3][2]*big.Int { |
|||
return [2][3][2]*big.Int{ |
|||
fq12.F.Add(a[0], b[0]), |
|||
fq12.F.Add(a[1], b[1]), |
|||
} |
|||
} |
|||
|
|||
// Double performs a doubling on the Fq12
|
|||
func (fq12 Fq12) Double(a [2][3][2]*big.Int) [2][3][2]*big.Int { |
|||
return fq12.Add(a, a) |
|||
} |
|||
|
|||
// Sub performs a subtraction on the Fq12
|
|||
func (fq12 Fq12) Sub(a, b [2][3][2]*big.Int) [2][3][2]*big.Int { |
|||
return [2][3][2]*big.Int{ |
|||
fq12.F.Sub(a[0], b[0]), |
|||
fq12.F.Sub(a[1], b[1]), |
|||
} |
|||
} |
|||
|
|||
// Neg performs a negation on the Fq12
|
|||
func (fq12 Fq12) Neg(a [2][3][2]*big.Int) [2][3][2]*big.Int { |
|||
return fq12.Sub(fq12.Zero(), a) |
|||
} |
|||
|
|||
// Mul performs a multiplication on the Fq12
|
|||
func (fq12 Fq12) Mul(a, b [2][3][2]*big.Int) [2][3][2]*big.Int { |
|||
// Multiplication and Squaring on Pairing-Friendly .pdf; Section 3 (Karatsuba)
|
|||
v0 := fq12.F.Mul(a[0], b[0]) |
|||
v1 := fq12.F.Mul(a[1], b[1]) |
|||
return [2][3][2]*big.Int{ |
|||
fq12.F.Add(v0, fq12.mulByNonResidue(v1)), |
|||
fq12.F.Sub( |
|||
fq12.F.Mul( |
|||
fq12.F.Add(a[0], a[1]), |
|||
fq12.F.Add(b[0], b[1])), |
|||
fq12.F.Add(v0, v1)), |
|||
} |
|||
} |
|||
|
|||
func (fq12 Fq12) MulScalar(base [2][3][2]*big.Int, e *big.Int) [2][3][2]*big.Int { |
|||
// for more possible implementations see g2.go file, at the function g2.MulScalar()
|
|||
|
|||
res := fq12.Zero() |
|||
rem := e |
|||
exp := base |
|||
|
|||
for !bytes.Equal(rem.Bytes(), big.NewInt(int64(0)).Bytes()) { |
|||
// if rem % 2 == 1
|
|||
if bytes.Equal(new(big.Int).Rem(rem, big.NewInt(int64(2))).Bytes(), big.NewInt(int64(1)).Bytes()) { |
|||
res = fq12.Add(res, exp) |
|||
} |
|||
exp = fq12.Double(exp) |
|||
rem = rem.Rsh(rem, 1) // rem = rem >> 1
|
|||
} |
|||
return res |
|||
} |
|||
|
|||
// Inverse returns the inverse on the Fq12
|
|||
func (fq12 Fq12) Inverse(a [2][3][2]*big.Int) [2][3][2]*big.Int { |
|||
t0 := fq12.F.Square(a[0]) |
|||
t1 := fq12.F.Square(a[1]) |
|||
t2 := fq12.F.Sub(t0, fq12.mulByNonResidue(t1)) |
|||
t3 := fq12.F.Inverse(t2) |
|||
return [2][3][2]*big.Int{ |
|||
fq12.F.Mul(a[0], t3), |
|||
fq12.F.Neg(fq12.F.Mul(a[1], t3)), |
|||
} |
|||
} |
|||
|
|||
// Div performs a division on the Fq12
|
|||
func (fq12 Fq12) Div(a, b [2][3][2]*big.Int) [2][3][2]*big.Int { |
|||
return fq12.Mul(a, fq12.Inverse(b)) |
|||
} |
|||
|
|||
// Square performs a square operation on the Fq12
|
|||
func (fq12 Fq12) Square(a [2][3][2]*big.Int) [2][3][2]*big.Int { |
|||
ab := fq12.F.Mul(a[0], a[1]) |
|||
|
|||
return [2][3][2]*big.Int{ |
|||
fq12.F.Sub( |
|||
fq12.F.Mul( |
|||
fq12.F.Add(a[0], a[1]), |
|||
fq12.F.Add( |
|||
a[0], |
|||
fq12.mulByNonResidue(a[1]))), |
|||
fq12.F.Add( |
|||
ab, |
|||
fq12.mulByNonResidue(ab))), |
|||
fq12.F.Add(ab, ab), |
|||
} |
|||
} |
|||
|
|||
func (fq12 Fq12) Exp(base [2][3][2]*big.Int, e *big.Int) [2][3][2]*big.Int { |
|||
res := fq12.One() |
|||
rem := fq12.Fq2.F.Copy(e) |
|||
exp := base |
|||
|
|||
for !bytes.Equal(rem.Bytes(), big.NewInt(int64(0)).Bytes()) { |
|||
if BigIsOdd(rem) { |
|||
res = fq12.Mul(res, exp) |
|||
} |
|||
exp = fq12.Square(exp) |
|||
rem = new(big.Int).Rsh(rem, 1) |
|||
} |
|||
return res |
|||
} |
|||
func (fq12 Fq12) Affine(a [2][3][2]*big.Int) [2][3][2]*big.Int { |
|||
return [2][3][2]*big.Int{ |
|||
fq12.F.Affine(a[0]), |
|||
fq12.F.Affine(a[1]), |
|||
} |
|||
} |
|||
func (fq12 Fq12) Equal(a, b [2][3][2]*big.Int) bool { |
|||
return fq12.F.Equal(a[0], b[0]) && fq12.F.Equal(a[1], b[1]) |
|||
} |
@ -0,0 +1,154 @@ |
|||
package bn128 |
|||
|
|||
import ( |
|||
"math/big" |
|||
) |
|||
|
|||
// Fq2 is Field 2
|
|||
type Fq2 struct { |
|||
F Fq |
|||
NonResidue *big.Int |
|||
} |
|||
|
|||
// NewFq2 generates a new Fq2
|
|||
func NewFq2(f Fq, nonResidue *big.Int) Fq2 { |
|||
fq2 := Fq2{ |
|||
f, |
|||
nonResidue, |
|||
} |
|||
return fq2 |
|||
} |
|||
|
|||
// Zero returns a Zero value on the Fq2
|
|||
func (fq2 Fq2) Zero() [2]*big.Int { |
|||
return [2]*big.Int{fq2.F.Zero(), fq2.F.Zero()} |
|||
} |
|||
|
|||
// One returns a One value on the Fq2
|
|||
func (fq2 Fq2) One() [2]*big.Int { |
|||
return [2]*big.Int{fq2.F.One(), fq2.F.Zero()} |
|||
} |
|||
|
|||
func (fq2 Fq2) mulByNonResidue(a *big.Int) *big.Int { |
|||
return fq2.F.Mul(fq2.NonResidue, a) |
|||
} |
|||
|
|||
// Add performs an addition on the Fq2
|
|||
func (fq2 Fq2) Add(a, b [2]*big.Int) [2]*big.Int { |
|||
return [2]*big.Int{ |
|||
fq2.F.Add(a[0], b[0]), |
|||
fq2.F.Add(a[1], b[1]), |
|||
} |
|||
} |
|||
|
|||
// Double performs a doubling on the Fq2
|
|||
func (fq2 Fq2) Double(a [2]*big.Int) [2]*big.Int { |
|||
return fq2.Add(a, a) |
|||
} |
|||
|
|||
// Sub performs a subtraction on the Fq2
|
|||
func (fq2 Fq2) Sub(a, b [2]*big.Int) [2]*big.Int { |
|||
return [2]*big.Int{ |
|||
fq2.F.Sub(a[0], b[0]), |
|||
fq2.F.Sub(a[1], b[1]), |
|||
} |
|||
} |
|||
|
|||
// Neg performs a negation on the Fq2
|
|||
func (fq2 Fq2) Neg(a [2]*big.Int) [2]*big.Int { |
|||
return fq2.Sub(fq2.Zero(), a) |
|||
} |
|||
|
|||
// Mul performs a multiplication on the Fq2
|
|||
func (fq2 Fq2) Mul(a, b [2]*big.Int) [2]*big.Int { |
|||
// Multiplication and Squaring on Pairing-Friendly.pdf; Section 3 (Karatsuba)
|
|||
// https://pdfs.semanticscholar.org/3e01/de88d7428076b2547b60072088507d881bf1.pdf
|
|||
v0 := fq2.F.Mul(a[0], b[0]) |
|||
v1 := fq2.F.Mul(a[1], b[1]) |
|||
return [2]*big.Int{ |
|||
fq2.F.Add(v0, fq2.mulByNonResidue(v1)), |
|||
fq2.F.Sub( |
|||
fq2.F.Mul( |
|||
fq2.F.Add(a[0], a[1]), |
|||
fq2.F.Add(b[0], b[1])), |
|||
fq2.F.Add(v0, v1)), |
|||
} |
|||
} |
|||
|
|||
func (fq2 Fq2) MulScalar(p [2]*big.Int, e *big.Int) [2]*big.Int { |
|||
// for more possible implementations see g2.go file, at the function g2.MulScalar()
|
|||
|
|||
q := fq2.Zero() |
|||
d := fq2.F.Copy(e) |
|||
r := p |
|||
|
|||
foundone := false |
|||
for i := d.BitLen(); i >= 0; i-- { |
|||
if foundone { |
|||
q = fq2.Double(q) |
|||
} |
|||
if d.Bit(i) == 1 { |
|||
foundone = true |
|||
q = fq2.Add(q, r) |
|||
} |
|||
} |
|||
return q |
|||
} |
|||
|
|||
// Inverse returns the inverse on the Fq2
|
|||
func (fq2 Fq2) Inverse(a [2]*big.Int) [2]*big.Int { |
|||
// High-Speed Software Implementation of the Optimal Ate Pairing over Barreto–Naehrig Curves .pdf
|
|||
// https://eprint.iacr.org/2010/354.pdf , algorithm 8
|
|||
t0 := fq2.F.Square(a[0]) |
|||
t1 := fq2.F.Square(a[1]) |
|||
t2 := fq2.F.Sub(t0, fq2.mulByNonResidue(t1)) |
|||
t3 := fq2.F.Inverse(t2) |
|||
return [2]*big.Int{ |
|||
fq2.F.Mul(a[0], t3), |
|||
fq2.F.Neg(fq2.F.Mul(a[1], t3)), |
|||
} |
|||
} |
|||
|
|||
// Div performs a division on the Fq2
|
|||
func (fq2 Fq2) Div(a, b [2]*big.Int) [2]*big.Int { |
|||
return fq2.Mul(a, fq2.Inverse(b)) |
|||
} |
|||
|
|||
// Square performs a square operation on the Fq2
|
|||
func (fq2 Fq2) Square(a [2]*big.Int) [2]*big.Int { |
|||
// https://pdfs.semanticscholar.org/3e01/de88d7428076b2547b60072088507d881bf1.pdf , complex squaring
|
|||
ab := fq2.F.Mul(a[0], a[1]) |
|||
return [2]*big.Int{ |
|||
fq2.F.Sub( |
|||
fq2.F.Mul( |
|||
fq2.F.Add(a[0], a[1]), |
|||
fq2.F.Add( |
|||
a[0], |
|||
fq2.mulByNonResidue(a[1]))), |
|||
fq2.F.Add( |
|||
ab, |
|||
fq2.mulByNonResidue(ab))), |
|||
fq2.F.Add(ab, ab), |
|||
} |
|||
} |
|||
|
|||
func (fq2 Fq2) IsZero(a [2]*big.Int) bool { |
|||
return fq2.F.IsZero(a[0]) && fq2.F.IsZero(a[1]) |
|||
} |
|||
|
|||
func (fq2 Fq2) Affine(a [2]*big.Int) [2]*big.Int { |
|||
return [2]*big.Int{ |
|||
fq2.F.Affine(a[0]), |
|||
fq2.F.Affine(a[1]), |
|||
} |
|||
} |
|||
func (fq2 Fq2) Equal(a, b [2]*big.Int) bool { |
|||
return fq2.F.Equal(a[0], b[0]) && fq2.F.Equal(a[1], b[1]) |
|||
} |
|||
|
|||
func (fq2 Fq2) Copy(a [2]*big.Int) [2]*big.Int { |
|||
return [2]*big.Int{ |
|||
fq2.F.Copy(a[0]), |
|||
fq2.F.Copy(a[1]), |
|||
} |
|||
} |
@ -0,0 +1,192 @@ |
|||
package bn128 |
|||
|
|||
import ( |
|||
"bytes" |
|||
"math/big" |
|||
) |
|||
|
|||
// Fq6 is Field 6
|
|||
type Fq6 struct { |
|||
F Fq2 |
|||
NonResidue [2]*big.Int |
|||
} |
|||
|
|||
// NewFq6 generates a new Fq6
|
|||
func NewFq6(f Fq2, nonResidue [2]*big.Int) Fq6 { |
|||
fq6 := Fq6{ |
|||
f, |
|||
nonResidue, |
|||
} |
|||
return fq6 |
|||
} |
|||
|
|||
// Zero returns a Zero value on the Fq6
|
|||
func (fq6 Fq6) Zero() [3][2]*big.Int { |
|||
return [3][2]*big.Int{fq6.F.Zero(), fq6.F.Zero(), fq6.F.Zero()} |
|||
} |
|||
|
|||
// One returns a One value on the Fq6
|
|||
func (fq6 Fq6) One() [3][2]*big.Int { |
|||
return [3][2]*big.Int{fq6.F.One(), fq6.F.Zero(), fq6.F.Zero()} |
|||
} |
|||
|
|||
func (fq6 Fq6) mulByNonResidue(a [2]*big.Int) [2]*big.Int { |
|||
return fq6.F.Mul(fq6.NonResidue, a) |
|||
} |
|||
|
|||
// Add performs an addition on the Fq6
|
|||
func (fq6 Fq6) Add(a, b [3][2]*big.Int) [3][2]*big.Int { |
|||
return [3][2]*big.Int{ |
|||
fq6.F.Add(a[0], b[0]), |
|||
fq6.F.Add(a[1], b[1]), |
|||
fq6.F.Add(a[2], b[2]), |
|||
} |
|||
} |
|||
|
|||
func (fq6 Fq6) Double(a [3][2]*big.Int) [3][2]*big.Int { |
|||
return fq6.Add(a, a) |
|||
} |
|||
|
|||
// Sub performs a subtraction on the Fq6
|
|||
func (fq6 Fq6) Sub(a, b [3][2]*big.Int) [3][2]*big.Int { |
|||
return [3][2]*big.Int{ |
|||
fq6.F.Sub(a[0], b[0]), |
|||
fq6.F.Sub(a[1], b[1]), |
|||
fq6.F.Sub(a[2], b[2]), |
|||
} |
|||
} |
|||
|
|||
// Neg performs a negation on the Fq6
|
|||
func (fq6 Fq6) Neg(a [3][2]*big.Int) [3][2]*big.Int { |
|||
return fq6.Sub(fq6.Zero(), a) |
|||
} |
|||
|
|||
// Mul performs a multiplication on the Fq6
|
|||
func (fq6 Fq6) Mul(a, b [3][2]*big.Int) [3][2]*big.Int { |
|||
v0 := fq6.F.Mul(a[0], b[0]) |
|||
v1 := fq6.F.Mul(a[1], b[1]) |
|||
v2 := fq6.F.Mul(a[2], b[2]) |
|||
return [3][2]*big.Int{ |
|||
fq6.F.Add( |
|||
v0, |
|||
fq6.mulByNonResidue( |
|||
fq6.F.Sub( |
|||
fq6.F.Mul( |
|||
fq6.F.Add(a[1], a[2]), |
|||
fq6.F.Add(b[1], b[2])), |
|||
fq6.F.Add(v1, v2)))), |
|||
|
|||
fq6.F.Add( |
|||
fq6.F.Sub( |
|||
fq6.F.Mul( |
|||
fq6.F.Add(a[0], a[1]), |
|||
fq6.F.Add(b[0], b[1])), |
|||
fq6.F.Add(v0, v1)), |
|||
fq6.mulByNonResidue(v2)), |
|||
|
|||
fq6.F.Add( |
|||
fq6.F.Sub( |
|||
fq6.F.Mul( |
|||
fq6.F.Add(a[0], a[2]), |
|||
fq6.F.Add(b[0], b[2])), |
|||
fq6.F.Add(v0, v2)), |
|||
v1), |
|||
} |
|||
} |
|||
|
|||
func (fq6 Fq6) MulScalar(base [3][2]*big.Int, e *big.Int) [3][2]*big.Int { |
|||
// for more possible implementations see g2.go file, at the function g2.MulScalar()
|
|||
|
|||
res := fq6.Zero() |
|||
rem := e |
|||
exp := base |
|||
|
|||
for !bytes.Equal(rem.Bytes(), big.NewInt(int64(0)).Bytes()) { |
|||
// if rem % 2 == 1
|
|||
if bytes.Equal(new(big.Int).Rem(rem, big.NewInt(int64(2))).Bytes(), big.NewInt(int64(1)).Bytes()) { |
|||
res = fq6.Add(res, exp) |
|||
} |
|||
exp = fq6.Double(exp) |
|||
rem = rem.Rsh(rem, 1) // rem = rem >> 1
|
|||
} |
|||
return res |
|||
} |
|||
|
|||
// Inverse returns the inverse on the Fq6
|
|||
func (fq6 Fq6) Inverse(a [3][2]*big.Int) [3][2]*big.Int { |
|||
t0 := fq6.F.Square(a[0]) |
|||
t1 := fq6.F.Square(a[1]) |
|||
t2 := fq6.F.Square(a[2]) |
|||
t3 := fq6.F.Mul(a[0], a[1]) |
|||
t4 := fq6.F.Mul(a[0], a[2]) |
|||
t5 := fq6.F.Mul(a[1], a[2]) |
|||
|
|||
c0 := fq6.F.Sub(t0, fq6.mulByNonResidue(t5)) |
|||
c1 := fq6.F.Sub(fq6.mulByNonResidue(t2), t3) |
|||
c2 := fq6.F.Sub(t1, t4) |
|||
|
|||
t6 := fq6.F.Inverse( |
|||
fq6.F.Add( |
|||
fq6.F.Mul(a[0], c0), |
|||
fq6.mulByNonResidue( |
|||
fq6.F.Add( |
|||
fq6.F.Mul(a[2], c1), |
|||
fq6.F.Mul(a[1], c2))))) |
|||
return [3][2]*big.Int{ |
|||
fq6.F.Mul(t6, c0), |
|||
fq6.F.Mul(t6, c1), |
|||
fq6.F.Mul(t6, c2), |
|||
} |
|||
} |
|||
|
|||
// Div performs a division on the Fq6
|
|||
func (fq6 Fq6) Div(a, b [3][2]*big.Int) [3][2]*big.Int { |
|||
return fq6.Mul(a, fq6.Inverse(b)) |
|||
} |
|||
|
|||
// Square performs a square operation on the Fq6
|
|||
func (fq6 Fq6) Square(a [3][2]*big.Int) [3][2]*big.Int { |
|||
s0 := fq6.F.Square(a[0]) |
|||
ab := fq6.F.Mul(a[0], a[1]) |
|||
s1 := fq6.F.Add(ab, ab) |
|||
s2 := fq6.F.Square( |
|||
fq6.F.Add( |
|||
fq6.F.Sub(a[0], a[1]), |
|||
a[2])) |
|||
bc := fq6.F.Mul(a[1], a[2]) |
|||
s3 := fq6.F.Add(bc, bc) |
|||
s4 := fq6.F.Square(a[2]) |
|||
|
|||
return [3][2]*big.Int{ |
|||
fq6.F.Add( |
|||
s0, |
|||
fq6.mulByNonResidue(s3)), |
|||
fq6.F.Add( |
|||
s1, |
|||
fq6.mulByNonResidue(s4)), |
|||
fq6.F.Sub( |
|||
fq6.F.Add( |
|||
fq6.F.Add(s1, s2), |
|||
s3), |
|||
fq6.F.Add(s0, s4)), |
|||
} |
|||
} |
|||
|
|||
func (fq6 Fq6) Affine(a [3][2]*big.Int) [3][2]*big.Int { |
|||
return [3][2]*big.Int{ |
|||
fq6.F.Affine(a[0]), |
|||
fq6.F.Affine(a[1]), |
|||
fq6.F.Affine(a[2]), |
|||
} |
|||
} |
|||
func (fq6 Fq6) Equal(a, b [3][2]*big.Int) bool { |
|||
return fq6.F.Equal(a[0], b[0]) && fq6.F.Equal(a[1], b[1]) && fq6.F.Equal(a[2], b[2]) |
|||
} |
|||
|
|||
func (fq6 Fq6) Copy(a [3][2]*big.Int) [3][2]*big.Int { |
|||
return [3][2]*big.Int{ |
|||
fq6.F.Copy(a[0]), |
|||
fq6.F.Copy(a[1]), |
|||
fq6.F.Copy(a[2]), |
|||
} |
|||
} |
@ -0,0 +1,160 @@ |
|||
package bn128 |
|||
|
|||
import ( |
|||
"math/big" |
|||
"testing" |
|||
|
|||
"github.com/stretchr/testify/assert" |
|||
) |
|||
|
|||
func iToBig(a int) *big.Int { |
|||
return big.NewInt(int64(a)) |
|||
} |
|||
|
|||
func iiToBig(a, b int) [2]*big.Int { |
|||
return [2]*big.Int{iToBig(a), iToBig(b)} |
|||
} |
|||
|
|||
func iiiToBig(a, b int) [2]*big.Int { |
|||
return [2]*big.Int{iToBig(a), iToBig(b)} |
|||
} |
|||
|
|||
func TestFq1(t *testing.T) { |
|||
fq1 := NewFq(iToBig(7)) |
|||
|
|||
res := fq1.Add(iToBig(4), iToBig(4)) |
|||
assert.Equal(t, iToBig(1), fq1.Affine(res)) |
|||
|
|||
res = fq1.Double(iToBig(5)) |
|||
assert.Equal(t, iToBig(3), fq1.Affine(res)) |
|||
|
|||
res = fq1.Sub(iToBig(5), iToBig(7)) |
|||
assert.Equal(t, iToBig(5), fq1.Affine(res)) |
|||
|
|||
res = fq1.Neg(iToBig(5)) |
|||
assert.Equal(t, iToBig(2), fq1.Affine(res)) |
|||
|
|||
res = fq1.Mul(iToBig(5), iToBig(11)) |
|||
assert.Equal(t, iToBig(6), fq1.Affine(res)) |
|||
|
|||
res = fq1.Inverse(iToBig(4)) |
|||
assert.Equal(t, iToBig(2), res) |
|||
|
|||
res = fq1.Square(iToBig(5)) |
|||
assert.Equal(t, iToBig(4), res) |
|||
} |
|||
|
|||
func TestFq2(t *testing.T) { |
|||
fq1 := NewFq(iToBig(7)) |
|||
nonResidueFq2str := "-1" // i/j
|
|||
nonResidueFq2, ok := new(big.Int).SetString(nonResidueFq2str, 10) |
|||
assert.True(t, ok) |
|||
assert.Equal(t, nonResidueFq2.String(), nonResidueFq2str) |
|||
|
|||
fq2 := Fq2{fq1, nonResidueFq2} |
|||
|
|||
res := fq2.Add(iiToBig(4, 4), iiToBig(3, 4)) |
|||
assert.Equal(t, iiToBig(0, 1), fq2.Affine(res)) |
|||
|
|||
res = fq2.Double(iiToBig(5, 3)) |
|||
assert.Equal(t, iiToBig(3, 6), fq2.Affine(res)) |
|||
|
|||
res = fq2.Sub(iiToBig(5, 3), iiToBig(7, 2)) |
|||
assert.Equal(t, iiToBig(5, 1), fq2.Affine(res)) |
|||
|
|||
res = fq2.Neg(iiToBig(4, 4)) |
|||
assert.Equal(t, iiToBig(3, 3), fq2.Affine(res)) |
|||
|
|||
res = fq2.Mul(iiToBig(4, 4), iiToBig(3, 4)) |
|||
assert.Equal(t, iiToBig(3, 0), fq2.Affine(res)) |
|||
|
|||
res = fq2.Inverse(iiToBig(4, 4)) |
|||
assert.Equal(t, iiToBig(1, 6), fq2.Affine(res)) |
|||
|
|||
res = fq2.Square(iiToBig(4, 4)) |
|||
assert.Equal(t, iiToBig(0, 4), fq2.Affine(res)) |
|||
res2 := fq2.Mul(iiToBig(4, 4), iiToBig(4, 4)) |
|||
assert.Equal(t, fq2.Affine(res), fq2.Affine(res2)) |
|||
assert.True(t, fq2.Equal(res, res2)) |
|||
|
|||
res = fq2.Square(iiToBig(3, 5)) |
|||
assert.Equal(t, iiToBig(5, 2), fq2.Affine(res)) |
|||
res2 = fq2.Mul(iiToBig(3, 5), iiToBig(3, 5)) |
|||
assert.Equal(t, fq2.Affine(res), fq2.Affine(res2)) |
|||
} |
|||
|
|||
func TestFq6(t *testing.T) { |
|||
bn128, err := NewBn128() |
|||
assert.Nil(t, err) |
|||
|
|||
a := [3][2]*big.Int{ |
|||
iiToBig(1, 2), |
|||
iiToBig(3, 4), |
|||
iiToBig(5, 6)} |
|||
b := [3][2]*big.Int{ |
|||
iiToBig(12, 11), |
|||
iiToBig(10, 9), |
|||
iiToBig(8, 7)} |
|||
|
|||
mulRes := bn128.Fq6.Mul(a, b) |
|||
divRes := bn128.Fq6.Div(mulRes, b) |
|||
assert.Equal(t, bn128.Fq6.Affine(a), bn128.Fq6.Affine(divRes)) |
|||
} |
|||
|
|||
func TestFq12(t *testing.T) { |
|||
q, ok := new(big.Int).SetString("21888242871839275222246405745257275088696311157297823662689037894645226208583", 10) // i
|
|||
assert.True(t, ok) |
|||
fq1 := NewFq(q) |
|||
nonResidueFq2, ok := new(big.Int).SetString("21888242871839275222246405745257275088696311157297823662689037894645226208582", 10) // i
|
|||
assert.True(t, ok) |
|||
nonResidueFq6 := iiToBig(9, 1) |
|||
|
|||
fq2 := Fq2{fq1, nonResidueFq2} |
|||
fq6 := Fq6{fq2, nonResidueFq6} |
|||
fq12 := Fq12{fq6, fq2, nonResidueFq6} |
|||
|
|||
a := [2][3][2]*big.Int{ |
|||
{ |
|||
iiToBig(1, 2), |
|||
iiToBig(3, 4), |
|||
iiToBig(5, 6), |
|||
}, |
|||
{ |
|||
iiToBig(7, 8), |
|||
iiToBig(9, 10), |
|||
iiToBig(11, 12), |
|||
}, |
|||
} |
|||
b := [2][3][2]*big.Int{ |
|||
{ |
|||
iiToBig(12, 11), |
|||
iiToBig(10, 9), |
|||
iiToBig(8, 7), |
|||
}, |
|||
{ |
|||
iiToBig(6, 5), |
|||
iiToBig(4, 3), |
|||
iiToBig(2, 1), |
|||
}, |
|||
} |
|||
|
|||
res := fq12.Add(a, b) |
|||
assert.Equal(t, |
|||
[2][3][2]*big.Int{ |
|||
{ |
|||
iiToBig(13, 13), |
|||
iiToBig(13, 13), |
|||
iiToBig(13, 13), |
|||
}, |
|||
{ |
|||
iiToBig(13, 13), |
|||
iiToBig(13, 13), |
|||
iiToBig(13, 13), |
|||
}, |
|||
}, |
|||
res) |
|||
|
|||
mulRes := fq12.Mul(a, b) |
|||
divRes := fq12.Div(mulRes, b) |
|||
assert.Equal(t, fq12.Affine(a), fq12.Affine(divRes)) |
|||
} |
@ -0,0 +1,191 @@ |
|||
package bn128 |
|||
|
|||
import ( |
|||
"math/big" |
|||
) |
|||
|
|||
type G1 struct { |
|||
F Fq |
|||
G [3]*big.Int |
|||
} |
|||
|
|||
func NewG1(f Fq, g [2]*big.Int) G1 { |
|||
var g1 G1 |
|||
g1.F = f |
|||
g1.G = [3]*big.Int{ |
|||
g[0], |
|||
g[1], |
|||
g1.F.One(), |
|||
} |
|||
return g1 |
|||
} |
|||
|
|||
func (g1 G1) Zero() [2]*big.Int { |
|||
return [2]*big.Int{g1.F.Zero(), g1.F.Zero()} |
|||
} |
|||
func (g1 G1) IsZero(p [3]*big.Int) bool { |
|||
return g1.F.IsZero(p[2]) |
|||
} |
|||
|
|||
func (g1 G1) Add(p1, p2 [3]*big.Int) [3]*big.Int { |
|||
|
|||
// https://en.wikibooks.org/wiki/Cryptography/Prime_Curve/Jacobian_Coordinates
|
|||
// https://github.com/zcash/zcash/blob/master/src/snark/libsnark/algebra/curves/alt_bn128/alt_bn128_g1.cpp#L208
|
|||
// http://hyperelliptic.org/EFD/g1p/auto-code/shortw/jacobian-0/addition/add-2007-bl.op3
|
|||
|
|||
if g1.IsZero(p1) { |
|||
return p2 |
|||
} |
|||
if g1.IsZero(p2) { |
|||
return p1 |
|||
} |
|||
|
|||
x1 := p1[0] |
|||
y1 := p1[1] |
|||
z1 := p1[2] |
|||
x2 := p2[0] |
|||
y2 := p2[1] |
|||
z2 := p2[2] |
|||
|
|||
z1z1 := g1.F.Square(z1) |
|||
z2z2 := g1.F.Square(z2) |
|||
|
|||
u1 := g1.F.Mul(x1, z2z2) |
|||
u2 := g1.F.Mul(x2, z1z1) |
|||
|
|||
t0 := g1.F.Mul(z2, z2z2) |
|||
s1 := g1.F.Mul(y1, t0) |
|||
|
|||
t1 := g1.F.Mul(z1, z1z1) |
|||
s2 := g1.F.Mul(y2, t1) |
|||
|
|||
h := g1.F.Sub(u2, u1) |
|||
t2 := g1.F.Add(h, h) |
|||
i := g1.F.Square(t2) |
|||
j := g1.F.Mul(h, i) |
|||
t3 := g1.F.Sub(s2, s1) |
|||
r := g1.F.Add(t3, t3) |
|||
v := g1.F.Mul(u1, i) |
|||
t4 := g1.F.Square(r) |
|||
t5 := g1.F.Add(v, v) |
|||
t6 := g1.F.Sub(t4, j) |
|||
x3 := g1.F.Sub(t6, t5) |
|||
t7 := g1.F.Sub(v, x3) |
|||
t8 := g1.F.Mul(s1, j) |
|||
t9 := g1.F.Add(t8, t8) |
|||
t10 := g1.F.Mul(r, t7) |
|||
|
|||
y3 := g1.F.Sub(t10, t9) |
|||
|
|||
t11 := g1.F.Add(z1, z2) |
|||
t12 := g1.F.Square(t11) |
|||
t13 := g1.F.Sub(t12, z1z1) |
|||
t14 := g1.F.Sub(t13, z2z2) |
|||
z3 := g1.F.Mul(t14, h) |
|||
|
|||
return [3]*big.Int{x3, y3, z3} |
|||
} |
|||
|
|||
func (g1 G1) Neg(p [3]*big.Int) [3]*big.Int { |
|||
return [3]*big.Int{ |
|||
p[0], |
|||
g1.F.Neg(p[1]), |
|||
p[2], |
|||
} |
|||
} |
|||
func (g1 G1) Sub(a, b [3]*big.Int) [3]*big.Int { |
|||
return g1.Add(a, g1.Neg(b)) |
|||
} |
|||
func (g1 G1) Double(p [3]*big.Int) [3]*big.Int { |
|||
|
|||
// https://en.wikibooks.org/wiki/Cryptography/Prime_Curve/Jacobian_Coordinates
|
|||
// http://hyperelliptic.org/EFD/g1p/auto-code/shortw/jacobian-0/doubling/dbl-2009-l.op3
|
|||
// https://github.com/zcash/zcash/blob/master/src/snark/libsnark/algebra/curves/alt_bn128/alt_bn128_g1.cpp#L325
|
|||
|
|||
if g1.IsZero(p) { |
|||
return p |
|||
} |
|||
|
|||
a := g1.F.Square(p[0]) |
|||
b := g1.F.Square(p[1]) |
|||
c := g1.F.Square(b) |
|||
|
|||
t0 := g1.F.Add(p[0], b) |
|||
t1 := g1.F.Square(t0) |
|||
t2 := g1.F.Sub(t1, a) |
|||
t3 := g1.F.Sub(t2, c) |
|||
|
|||
d := g1.F.Double(t3) |
|||
e := g1.F.Add(g1.F.Add(a, a), a) |
|||
f := g1.F.Square(e) |
|||
|
|||
t4 := g1.F.Double(d) |
|||
x3 := g1.F.Sub(f, t4) |
|||
|
|||
t5 := g1.F.Sub(d, x3) |
|||
twoC := g1.F.Add(c, c) |
|||
fourC := g1.F.Add(twoC, twoC) |
|||
t6 := g1.F.Add(fourC, fourC) |
|||
t7 := g1.F.Mul(e, t5) |
|||
y3 := g1.F.Sub(t7, t6) |
|||
|
|||
t8 := g1.F.Mul(p[1], p[2]) |
|||
z3 := g1.F.Double(t8) |
|||
|
|||
return [3]*big.Int{x3, y3, z3} |
|||
} |
|||
|
|||
func (g1 G1) MulScalar(p [3]*big.Int, e *big.Int) [3]*big.Int { |
|||
// https://en.wikipedia.org/wiki/Elliptic_curve_point_multiplication#Double-and-add
|
|||
// for more possible implementations see g2.go file, at the function g2.MulScalar()
|
|||
|
|||
q := [3]*big.Int{g1.F.Zero(), g1.F.Zero(), g1.F.Zero()} |
|||
d := g1.F.Copy(e) |
|||
r := p |
|||
for i := d.BitLen() - 1; i >= 0; i-- { |
|||
q = g1.Double(q) |
|||
if d.Bit(i) == 1 { |
|||
q = g1.Add(q, r) |
|||
} |
|||
} |
|||
|
|||
return q |
|||
} |
|||
|
|||
func (g1 G1) Affine(p [3]*big.Int) [2]*big.Int { |
|||
if g1.IsZero(p) { |
|||
return g1.Zero() |
|||
} |
|||
|
|||
zinv := g1.F.Inverse(p[2]) |
|||
zinv2 := g1.F.Square(zinv) |
|||
x := g1.F.Mul(p[0], zinv2) |
|||
|
|||
zinv3 := g1.F.Mul(zinv2, zinv) |
|||
y := g1.F.Mul(p[1], zinv3) |
|||
|
|||
return [2]*big.Int{x, y} |
|||
} |
|||
|
|||
func (g1 G1) Equal(p1, p2 [3]*big.Int) bool { |
|||
if g1.IsZero(p1) { |
|||
return g1.IsZero(p2) |
|||
} |
|||
if g1.IsZero(p2) { |
|||
return g1.IsZero(p1) |
|||
} |
|||
|
|||
z1z1 := g1.F.Square(p1[2]) |
|||
z2z2 := g1.F.Square(p2[2]) |
|||
|
|||
u1 := g1.F.Mul(p1[0], z2z2) |
|||
u2 := g1.F.Mul(p2[0], z1z1) |
|||
|
|||
z1cub := g1.F.Mul(p1[2], z1z1) |
|||
z2cub := g1.F.Mul(p2[2], z2z2) |
|||
|
|||
s1 := g1.F.Mul(p1[1], z2cub) |
|||
s2 := g1.F.Mul(p2[1], z1cub) |
|||
|
|||
return g1.F.Equal(u1, u2) && g1.F.Equal(s1, s2) |
|||
} |
@ -0,0 +1,31 @@ |
|||
package bn128 |
|||
|
|||
import ( |
|||
"math/big" |
|||
"testing" |
|||
|
|||
"github.com/arnaucube/cryptofun/utils" |
|||
"github.com/stretchr/testify/assert" |
|||
) |
|||
|
|||
func TestG1(t *testing.T) { |
|||
bn128, err := NewBn128() |
|||
assert.Nil(t, err) |
|||
|
|||
r1 := big.NewInt(int64(33)) |
|||
r2 := big.NewInt(int64(44)) |
|||
|
|||
gr1 := bn128.G1.MulScalar(bn128.G1.G, bn128.Fq1.Copy(r1)) |
|||
gr2 := bn128.G1.MulScalar(bn128.G1.G, bn128.Fq1.Copy(r2)) |
|||
|
|||
grsum1 := bn128.G1.Add(gr1, gr2) // g*33 + g*44
|
|||
r1r2 := bn128.Fq1.Add(r1, r2) // 33 + 44
|
|||
grsum2 := bn128.G1.MulScalar(bn128.G1.G, r1r2) // g * (33+44)
|
|||
|
|||
assert.True(t, bn128.G1.Equal(grsum1, grsum2)) |
|||
a := bn128.G1.Affine(grsum1) |
|||
b := bn128.G1.Affine(grsum2) |
|||
assert.Equal(t, a, b) |
|||
assert.Equal(t, "0x2f978c0ab89ebaa576866706b14787f360c4d6c3869efe5a72f7c3651a72ff00", utils.BytesToHex(a[0].Bytes())) |
|||
assert.Equal(t, "0x12e4ba7f0edca8b4fa668fe153aebd908d322dc26ad964d4cd314795844b62b2", utils.BytesToHex(a[1].Bytes())) |
|||
} |
@ -0,0 +1,221 @@ |
|||
package bn128 |
|||
|
|||
import ( |
|||
"math/big" |
|||
) |
|||
|
|||
type G2 struct { |
|||
F Fq2 |
|||
G [3][2]*big.Int |
|||
} |
|||
|
|||
func NewG2(f Fq2, g [2][2]*big.Int) G2 { |
|||
var g2 G2 |
|||
g2.F = f |
|||
g2.G = [3][2]*big.Int{ |
|||
g[0], |
|||
g[1], |
|||
g2.F.One(), |
|||
} |
|||
return g2 |
|||
} |
|||
|
|||
func (g2 G2) Zero() [3][2]*big.Int { |
|||
return [3][2]*big.Int{g2.F.Zero(), g2.F.One(), g2.F.Zero()} |
|||
} |
|||
func (g2 G2) IsZero(p [3][2]*big.Int) bool { |
|||
return g2.F.IsZero(p[2]) |
|||
} |
|||
|
|||
func (g2 G2) Add(p1, p2 [3][2]*big.Int) [3][2]*big.Int { |
|||
|
|||
// https://en.wikibooks.org/wiki/Cryptography/Prime_Curve/Jacobian_Coordinates
|
|||
// https://github.com/zcash/zcash/blob/master/src/snark/libsnark/algebra/curves/alt_bn128/alt_bn128_g2.cpp#L208
|
|||
// http://hyperelliptic.org/EFD/g2p/auto-code/shortw/jacobian-0/addition/add-2007-bl.op3
|
|||
|
|||
if g2.IsZero(p1) { |
|||
return p2 |
|||
} |
|||
if g2.IsZero(p2) { |
|||
return p1 |
|||
} |
|||
|
|||
x1 := p1[0] |
|||
y1 := p1[1] |
|||
z1 := p1[2] |
|||
x2 := p2[0] |
|||
y2 := p2[1] |
|||
z2 := p2[2] |
|||
|
|||
z1z1 := g2.F.Square(z1) |
|||
z2z2 := g2.F.Square(z2) |
|||
|
|||
u1 := g2.F.Mul(x1, z2z2) |
|||
u2 := g2.F.Mul(x2, z1z1) |
|||
|
|||
t0 := g2.F.Mul(z2, z2z2) |
|||
s1 := g2.F.Mul(y1, t0) |
|||
|
|||
t1 := g2.F.Mul(z1, z1z1) |
|||
s2 := g2.F.Mul(y2, t1) |
|||
|
|||
h := g2.F.Sub(u2, u1) |
|||
t2 := g2.F.Add(h, h) |
|||
i := g2.F.Square(t2) |
|||
j := g2.F.Mul(h, i) |
|||
t3 := g2.F.Sub(s2, s1) |
|||
r := g2.F.Add(t3, t3) |
|||
v := g2.F.Mul(u1, i) |
|||
t4 := g2.F.Square(r) |
|||
t5 := g2.F.Add(v, v) |
|||
t6 := g2.F.Sub(t4, j) |
|||
x3 := g2.F.Sub(t6, t5) |
|||
t7 := g2.F.Sub(v, x3) |
|||
t8 := g2.F.Mul(s1, j) |
|||
t9 := g2.F.Add(t8, t8) |
|||
t10 := g2.F.Mul(r, t7) |
|||
|
|||
y3 := g2.F.Sub(t10, t9) |
|||
|
|||
t11 := g2.F.Add(z1, z2) |
|||
t12 := g2.F.Square(t11) |
|||
t13 := g2.F.Sub(t12, z1z1) |
|||
t14 := g2.F.Sub(t13, z2z2) |
|||
z3 := g2.F.Mul(t14, h) |
|||
|
|||
return [3][2]*big.Int{x3, y3, z3} |
|||
} |
|||
|
|||
func (g2 G2) Neg(p [3][2]*big.Int) [3][2]*big.Int { |
|||
return [3][2]*big.Int{ |
|||
p[0], |
|||
g2.F.Neg(p[1]), |
|||
p[2], |
|||
} |
|||
} |
|||
|
|||
func (g2 G2) Sub(a, b [3][2]*big.Int) [3][2]*big.Int { |
|||
return g2.Add(a, g2.Neg(b)) |
|||
} |
|||
|
|||
func (g2 G2) Double(p [3][2]*big.Int) [3][2]*big.Int { |
|||
|
|||
// https://en.wikibooks.org/wiki/Cryptography/Prime_Curve/Jacobian_Coordinates
|
|||
// http://hyperelliptic.org/EFD/g2p/auto-code/shortw/jacobian-0/doubling/dbl-2009-l.op3
|
|||
// https://github.com/zcash/zcash/blob/master/src/snark/libsnark/algebra/curves/alt_bn128/alt_bn128_g2.cpp#L325
|
|||
|
|||
if g2.IsZero(p) { |
|||
return p |
|||
} |
|||
|
|||
a := g2.F.Square(p[0]) |
|||
b := g2.F.Square(p[1]) |
|||
c := g2.F.Square(b) |
|||
|
|||
t0 := g2.F.Add(p[0], b) |
|||
t1 := g2.F.Square(t0) |
|||
t2 := g2.F.Sub(t1, a) |
|||
t3 := g2.F.Sub(t2, c) |
|||
|
|||
d := g2.F.Double(t3) |
|||
e := g2.F.Add(g2.F.Add(a, a), a) |
|||
f := g2.F.Square(e) |
|||
|
|||
t4 := g2.F.Double(d) |
|||
x3 := g2.F.Sub(f, t4) |
|||
|
|||
t5 := g2.F.Sub(d, x3) |
|||
twoC := g2.F.Add(c, c) |
|||
fourC := g2.F.Add(twoC, twoC) |
|||
t6 := g2.F.Add(fourC, fourC) |
|||
t7 := g2.F.Mul(e, t5) |
|||
y3 := g2.F.Sub(t7, t6) |
|||
|
|||
t8 := g2.F.Mul(p[1], p[2]) |
|||
z3 := g2.F.Double(t8) |
|||
|
|||
return [3][2]*big.Int{x3, y3, z3} |
|||
} |
|||
|
|||
func (g2 G2) MulScalar(p [3][2]*big.Int, e *big.Int) [3][2]*big.Int { |
|||
// https://en.wikipedia.org/wiki/Elliptic_curve_point_multiplication#Double-and-add
|
|||
|
|||
q := [3][2]*big.Int{g2.F.Zero(), g2.F.Zero(), g2.F.Zero()} |
|||
d := g2.F.F.Copy(e) // d := e
|
|||
r := p |
|||
|
|||
/* |
|||
here are three possible implementations: |
|||
*/ |
|||
|
|||
/* index decreasing: */ |
|||
for i := d.BitLen() - 1; i >= 0; i-- { |
|||
q = g2.Double(q) |
|||
if d.Bit(i) == 1 { |
|||
q = g2.Add(q, r) |
|||
} |
|||
} |
|||
|
|||
/* index increasing: */ |
|||
// for i := 0; i <= d.BitLen(); i++ {
|
|||
// if d.Bit(i) == 1 {
|
|||
// q = g2.Add(q, r)
|
|||
// }
|
|||
// r = g2.Double(r)
|
|||
// }
|
|||
|
|||
// foundone := false
|
|||
// for i := d.BitLen(); i >= 0; i-- {
|
|||
// if foundone {
|
|||
// q = g2.Double(q)
|
|||
// }
|
|||
// if d.Bit(i) == 1 {
|
|||
// foundone = true
|
|||
// q = g2.Add(q, r)
|
|||
// }
|
|||
// }
|
|||
|
|||
return q |
|||
} |
|||
|
|||
func (g2 G2) Affine(p [3][2]*big.Int) [3][2]*big.Int { |
|||
if g2.IsZero(p) { |
|||
return g2.Zero() |
|||
} |
|||
|
|||
zinv := g2.F.Inverse(p[2]) |
|||
zinv2 := g2.F.Square(zinv) |
|||
x := g2.F.Mul(p[0], zinv2) |
|||
|
|||
zinv3 := g2.F.Mul(zinv2, zinv) |
|||
y := g2.F.Mul(p[1], zinv3) |
|||
|
|||
return [3][2]*big.Int{ |
|||
g2.F.Affine(x), |
|||
g2.F.Affine(y), |
|||
g2.F.One(), |
|||
} |
|||
} |
|||
|
|||
func (g2 G2) Equal(p1, p2 [3][2]*big.Int) bool { |
|||
if g2.IsZero(p1) { |
|||
return g2.IsZero(p2) |
|||
} |
|||
if g2.IsZero(p2) { |
|||
return g2.IsZero(p1) |
|||
} |
|||
|
|||
z1z1 := g2.F.Square(p1[2]) |
|||
z2z2 := g2.F.Square(p2[2]) |
|||
|
|||
u1 := g2.F.Mul(p1[0], z2z2) |
|||
u2 := g2.F.Mul(p2[0], z1z1) |
|||
|
|||
z1cub := g2.F.Mul(p1[2], z1z1) |
|||
z2cub := g2.F.Mul(p2[2], z2z2) |
|||
|
|||
s1 := g2.F.Mul(p1[1], z2cub) |
|||
s2 := g2.F.Mul(p2[1], z1cub) |
|||
|
|||
return g2.F.Equal(u1, u2) && g2.F.Equal(s1, s2) |
|||
} |
@ -0,0 +1,24 @@ |
|||
package bn128 |
|||
|
|||
import ( |
|||
"math/big" |
|||
"testing" |
|||
|
|||
"github.com/stretchr/testify/assert" |
|||
) |
|||
|
|||
func TestG2(t *testing.T) { |
|||
bn128, err := NewBn128() |
|||
assert.Nil(t, err) |
|||
|
|||
r1 := big.NewInt(int64(33)) |
|||
r2 := big.NewInt(int64(44)) |
|||
|
|||
gr1 := bn128.G2.Affine(bn128.G2.MulScalar(bn128.G2.G, r1)) |
|||
gr2 := bn128.G2.Affine(bn128.G2.MulScalar(bn128.G2.G, r2)) |
|||
|
|||
grsum1 := bn128.G2.Affine(bn128.G2.Add(gr1, gr2)) |
|||
r1r2 := bn128.Fq1.Affine(bn128.Fq1.Add(r1, r2)) |
|||
grsum2 := bn128.G2.Affine(bn128.G2.MulScalar(bn128.G2.G, r1r2)) |
|||
assert.True(t, bn128.G2.Equal(grsum1, grsum2)) |
|||
} |
@ -0,0 +1,6 @@ |
|||
module github.com/arnaucube/go-snark |
|||
|
|||
require ( |
|||
github.com/arnaucube/cryptofun v0.0.0-20181124004321-9b11ae8280bd |
|||
github.com/stretchr/testify v1.2.2 |
|||
) |
@ -0,0 +1,8 @@ |
|||
github.com/arnaucube/cryptofun v0.0.0-20181124004321-9b11ae8280bd h1:NDpNBTFeHNE2IHya+msmKlCzIPGzn8qN3Z2jtegFYT0= |
|||
github.com/arnaucube/cryptofun v0.0.0-20181124004321-9b11ae8280bd/go.mod h1:PZE8kKpHPD1UMrS3mTfAMmEEinGtijSwjxLRqRcD64A= |
|||
github.com/davecgh/go-spew v1.1.1 h1:vj9j/u1bqnvCEfJOwUhtlOARqs3+rkHYY13jYWTU97c= |
|||
github.com/davecgh/go-spew v1.1.1/go.mod h1:J7Y8YcW2NihsgmVo/mv3lAwl/skON4iLHjSsI+c5H38= |
|||
github.com/pmezard/go-difflib v1.0.0 h1:4DBwDE0NGyQoBHbLQYPwSUPoCMWR5BEzIk/f1lZbAQM= |
|||
github.com/pmezard/go-difflib v1.0.0/go.mod h1:iKH77koFhYxTK1pcRnkKkqfTogsbg7gZNVY4sRDYZ/4= |
|||
github.com/stretchr/testify v1.2.2 h1:bSDNvY7ZPG5RlJ8otE/7V6gMiyenm9RtJ7IUVIAoJ1w= |
|||
github.com/stretchr/testify v1.2.2/go.mod h1:a8OnRcib4nhh0OaRAV+Yts87kKdq0PP7pXfy6kDkUVs= |
@ -0,0 +1,145 @@ |
|||
package sn |
|||
|
|||
import ( |
|||
"math/big" |
|||
) |
|||
|
|||
func Transpose(matrix [][]*big.Float) [][]*big.Float { |
|||
var r [][]*big.Float |
|||
for i := 0; i < len(matrix[0]); i++ { |
|||
var row []*big.Float |
|||
for j := 0; j < len(matrix); j++ { |
|||
row = append(row, matrix[j][i]) |
|||
} |
|||
r = append(r, row) |
|||
} |
|||
return r |
|||
} |
|||
|
|||
func ArrayOfBigZeros(num int) []*big.Float { |
|||
bigZero := big.NewFloat(float64(0)) |
|||
var r []*big.Float |
|||
for i := 0; i < num; i++ { |
|||
r = append(r, bigZero) |
|||
} |
|||
return r |
|||
} |
|||
|
|||
func PolMul(a, b []*big.Float) []*big.Float { |
|||
r := ArrayOfBigZeros(len(a) + len(b) - 1) |
|||
for i := 0; i < len(a); i++ { |
|||
for j := 0; j < len(b); j++ { |
|||
r[i+j] = new(big.Float).Add( |
|||
r[i+j], |
|||
new(big.Float).Mul(a[i], b[j])) |
|||
} |
|||
} |
|||
return r |
|||
} |
|||
|
|||
func max(a, b int) int { |
|||
if a > b { |
|||
return a |
|||
} |
|||
return b |
|||
} |
|||
|
|||
func PolAdd(a, b []*big.Float) []*big.Float { |
|||
r := ArrayOfBigZeros(max(len(a), len(b))) |
|||
for i := 0; i < len(a); i++ { |
|||
r[i] = new(big.Float).Add(r[i], a[i]) |
|||
} |
|||
for i := 0; i < len(b); i++ { |
|||
r[i] = new(big.Float).Add(r[i], b[i]) |
|||
} |
|||
return r |
|||
} |
|||
|
|||
func PolSub(a, b []*big.Float) []*big.Float { |
|||
r := ArrayOfBigZeros(max(len(a), len(b))) |
|||
for i := 0; i < len(a); i++ { |
|||
r[i] = new(big.Float).Add(r[i], a[i]) |
|||
} |
|||
for i := 0; i < len(b); i++ { |
|||
bneg := new(big.Float).Mul(b[i], big.NewFloat(float64(-1))) |
|||
r[i] = new(big.Float).Add(r[i], bneg) |
|||
} |
|||
return r |
|||
|
|||
} |
|||
|
|||
func FloatPow(a *big.Float, e int) *big.Float { |
|||
if e == 0 { |
|||
return big.NewFloat(float64(1)) |
|||
} |
|||
result := new(big.Float).Copy(a) |
|||
for i := 0; i < e-1; i++ { |
|||
result = new(big.Float).Mul(result, a) |
|||
} |
|||
return result |
|||
} |
|||
|
|||
func PolEval(v []*big.Float, x *big.Float) *big.Float { |
|||
r := big.NewFloat(float64(0)) |
|||
for i := 0; i < len(v); i++ { |
|||
xi := FloatPow(x, i) |
|||
elem := new(big.Float).Mul(v[i], xi) |
|||
r = new(big.Float).Add(r, elem) |
|||
} |
|||
return r |
|||
} |
|||
|
|||
func NewPolZeroAt(pointPos, totalPoints int, height *big.Float) []*big.Float { |
|||
fac := 1 |
|||
for i := 1; i < totalPoints+1; i++ { |
|||
if i != pointPos { |
|||
fac = fac * (pointPos - i) |
|||
} |
|||
} |
|||
facBig := big.NewFloat(float64(fac)) |
|||
hf := new(big.Float).Quo(height, facBig) |
|||
r := []*big.Float{hf} |
|||
for i := 1; i < totalPoints+1; i++ { |
|||
if i != pointPos { |
|||
ineg := big.NewFloat(float64(-i)) |
|||
b1 := big.NewFloat(float64(1)) |
|||
r = PolMul(r, []*big.Float{ineg, b1}) |
|||
} |
|||
} |
|||
return r |
|||
} |
|||
|
|||
func LagrangeInterpolation(v []*big.Float) []*big.Float { |
|||
// https://en.wikipedia.org/wiki/Lagrange_polynomial
|
|||
var r []*big.Float |
|||
for i := 0; i < len(v); i++ { |
|||
r = PolAdd(r, NewPolZeroAt(i+1, len(v), v[i])) |
|||
} |
|||
//
|
|||
return r |
|||
} |
|||
|
|||
func R1CSToQAP(a, b, c [][]*big.Float) ([][]*big.Float, [][]*big.Float, [][]*big.Float, []*big.Float) { |
|||
aT := Transpose(a) |
|||
bT := Transpose(b) |
|||
cT := Transpose(c) |
|||
var alpha [][]*big.Float |
|||
for i := 0; i < len(aT); i++ { |
|||
alpha = append(alpha, LagrangeInterpolation(aT[i])) |
|||
} |
|||
var beta [][]*big.Float |
|||
for i := 0; i < len(bT); i++ { |
|||
beta = append(beta, LagrangeInterpolation(bT[i])) |
|||
} |
|||
var gamma [][]*big.Float |
|||
for i := 0; i < len(cT); i++ { |
|||
gamma = append(gamma, LagrangeInterpolation(cT[i])) |
|||
} |
|||
z := []*big.Float{big.NewFloat(float64(1))} |
|||
for i := 1; i < len(aT[0])+1; i++ { |
|||
ineg := big.NewFloat(float64(-i)) |
|||
b1 := big.NewFloat(float64(1)) |
|||
z = PolMul(z, []*big.Float{ineg, b1}) |
|||
} |
|||
return alpha, beta, gamma, z |
|||
} |
@ -0,0 +1,112 @@ |
|||
package sn |
|||
|
|||
import ( |
|||
"fmt" |
|||
"math/big" |
|||
"testing" |
|||
|
|||
"github.com/stretchr/testify/assert" |
|||
) |
|||
|
|||
func TestTranspose(t *testing.T) { |
|||
b0 := big.NewFloat(float64(0)) |
|||
b1 := big.NewFloat(float64(1)) |
|||
bFive := big.NewFloat(float64(5)) |
|||
a := [][]*big.Float{ |
|||
[]*big.Float{b0, b1, b0, b0, b0, b0}, |
|||
[]*big.Float{b0, b0, b0, b1, b0, b0}, |
|||
[]*big.Float{b0, b1, b0, b0, b1, b0}, |
|||
[]*big.Float{bFive, b0, b0, b0, b0, b1}, |
|||
} |
|||
aT := Transpose(a) |
|||
assert.Equal(t, aT, [][]*big.Float{ |
|||
[]*big.Float{b0, b0, b0, bFive}, |
|||
[]*big.Float{b1, b0, b1, b0}, |
|||
[]*big.Float{b0, b0, b0, b0}, |
|||
[]*big.Float{b0, b1, b0, b0}, |
|||
[]*big.Float{b0, b0, b1, b0}, |
|||
[]*big.Float{b0, b0, b0, b1}, |
|||
}) |
|||
} |
|||
|
|||
func TestPol(t *testing.T) { |
|||
b0 := big.NewFloat(float64(0)) |
|||
b1 := big.NewFloat(float64(1)) |
|||
// b1neg := big.NewFloat(float64(-1))
|
|||
// b2 := big.NewFloat(float64(2))
|
|||
b2neg := big.NewFloat(float64(-2)) |
|||
b3 := big.NewFloat(float64(3)) |
|||
b4 := big.NewFloat(float64(4)) |
|||
b5 := big.NewFloat(float64(5)) |
|||
b6 := big.NewFloat(float64(6)) |
|||
b16 := big.NewFloat(float64(16)) |
|||
|
|||
a := []*big.Float{b1, b0, b5} |
|||
b := []*big.Float{b3, b0, b1} |
|||
|
|||
// polynomial multiplication
|
|||
c := PolMul(a, b) |
|||
assert.Equal(t, c, []*big.Float{b3, b0, b16, b0, b5}) |
|||
|
|||
// polynomial addition
|
|||
c = PolAdd(a, b) |
|||
assert.Equal(t, c, []*big.Float{b4, b0, b6}) |
|||
|
|||
// polynomial substraction
|
|||
c = PolSub(a, b) |
|||
assert.Equal(t, c, []*big.Float{b2neg, b0, b4}) |
|||
|
|||
// FloatPow
|
|||
p := FloatPow(big.NewFloat(float64(5)), 3) |
|||
assert.Equal(t, p, big.NewFloat(float64(125))) |
|||
p = FloatPow(big.NewFloat(float64(5)), 0) |
|||
assert.Equal(t, p, big.NewFloat(float64(1))) |
|||
|
|||
// NewPolZeroAt
|
|||
r := NewPolZeroAt(3, 4, b4) |
|||
assert.Equal(t, PolEval(r, big.NewFloat(3)), b4) |
|||
r = NewPolZeroAt(2, 4, b3) |
|||
assert.Equal(t, PolEval(r, big.NewFloat(2)), b3) |
|||
} |
|||
|
|||
func TestLagrangeInterpolation(t *testing.T) { |
|||
b0 := big.NewFloat(float64(0)) |
|||
b5 := big.NewFloat(float64(5)) |
|||
a := []*big.Float{b0, b0, b0, b5} |
|||
alpha := LagrangeInterpolation(a) |
|||
|
|||
assert.Equal(t, PolEval(alpha, big.NewFloat(4)), b5) |
|||
aux, _ := PolEval(alpha, big.NewFloat(3)).Int64() |
|||
assert.Equal(t, aux, int64(0)) |
|||
|
|||
} |
|||
|
|||
func TestR1CSToQAP(t *testing.T) { |
|||
b0 := big.NewFloat(float64(0)) |
|||
b1 := big.NewFloat(float64(1)) |
|||
b5 := big.NewFloat(float64(5)) |
|||
a := [][]*big.Float{ |
|||
[]*big.Float{b0, b1, b0, b0, b0, b0}, |
|||
[]*big.Float{b0, b0, b0, b1, b0, b0}, |
|||
[]*big.Float{b0, b1, b0, b0, b1, b0}, |
|||
[]*big.Float{b5, b0, b0, b0, b0, b1}, |
|||
} |
|||
b := [][]*big.Float{ |
|||
[]*big.Float{b0, b1, b0, b0, b0, b0}, |
|||
[]*big.Float{b0, b1, b0, b0, b0, b0}, |
|||
[]*big.Float{b1, b0, b0, b0, b0, b0}, |
|||
[]*big.Float{b1, b0, b0, b0, b0, b0}, |
|||
} |
|||
c := [][]*big.Float{ |
|||
[]*big.Float{b0, b0, b0, b1, b0, b0}, |
|||
[]*big.Float{b0, b0, b0, b0, b1, b0}, |
|||
[]*big.Float{b0, b0, b0, b0, b0, b1}, |
|||
[]*big.Float{b0, b0, b1, b0, b0, b0}, |
|||
} |
|||
alpha, beta, gamma, z := R1CSToQAP(a, b, c) |
|||
fmt.Println(alpha) |
|||
fmt.Println(beta) |
|||
fmt.Println(gamma) |
|||
fmt.Println(z) |
|||
|
|||
} |