package snark import ( "fmt" "github.com/mottla/go-snark/circuitcompiler" "github.com/mottla/go-snark/r1csqap" "github.com/stretchr/testify/assert" "math/big" "strings" "testing" ) func TestNewProgramm(t *testing.T) { flat := ` func add(x ,k): z = k * x out = x + mul(x,z) func main(a,b): out = add(a,b) * a func mul(a,b): out = a * b ` parser := circuitcompiler.NewParser(strings.NewReader(flat)) program, err := parser.Parse() if err != nil { panic(err) } fmt.Println("\n unreduced") fmt.Println(flat) program.BuildConstraintTrees() program.PrintConstraintTrees() fmt.Println("\nReduced gates") //PrintTree(froots["mul"]) gates := program.ReduceCombinedTree() for _, g := range gates { fmt.Println(g) } fmt.Println("generating R1CS") a, b, c := program.GenerateReducedR1CS(gates) fmt.Println(a) fmt.Println(b) fmt.Println(c) a1 := big.NewInt(int64(6)) a2 := big.NewInt(int64(5)) inputs := []*big.Int{a1, a2} w := program.CalculateWitness(inputs) fmt.Println("witness") fmt.Println(w) // R1CS to QAP alphas, betas, gammas, zxQAP := Utils.PF.R1CSToQAP(a, b, c) fmt.Println("qap") fmt.Println("alphas", len(alphas)) fmt.Println("alphas", alphas) fmt.Println("betas", len(betas)) fmt.Println("gammas", len(gammas)) fmt.Println("zx length", len(zxQAP)) ax, bx, cx, px := Utils.PF.CombinePolynomials(w, alphas, betas, gammas) fmt.Println("ax length", len(ax)) fmt.Println("bx length", len(bx)) fmt.Println("cx length", len(cx)) fmt.Println("px length", len(px)) hxQAP := Utils.PF.DivisorPolynomial(px, zxQAP) fmt.Println("hx length", len(hxQAP)) // hx==px/zx so px==hx*zx assert.Equal(t, px, Utils.PF.Mul(hxQAP, zxQAP)) // p(x) = a(x) * b(x) - c(x) == h(x) * z(x) abc := Utils.PF.Sub(Utils.PF.Mul(ax, bx), cx) assert.Equal(t, abc, px) hzQAP := Utils.PF.Mul(hxQAP, zxQAP) assert.Equal(t, abc, hzQAP) div, rem := Utils.PF.Div(px, zxQAP) assert.Equal(t, hxQAP, div) assert.Equal(t, rem, r1csqap.ArrayOfBigZeros(4)) // calculate trusted setup //setup, err := GenerateTrustedSetup(len(w), *circuit, alphas, betas, gammas) //assert.Nil(t, err) //fmt.Println("\nt:", setup.Toxic.T) // //// zx and setup.Pk.Z should be the same (currently not, the correct one is the calculation used inside GenerateTrustedSetup function), the calculation is repeated. TODO avoid repeating calculation //// assert.Equal(t, zxQAP, setup.Pk.Z) // //fmt.Println("hx pk.z", hxQAP) //hx := Utils.PF.DivisorPolynomial(px, setup.Pk.Z) //fmt.Println("hx pk.z", hx) //// assert.Equal(t, hxQAP, hx) //assert.Equal(t, px, Utils.PF.Mul(hxQAP, zxQAP)) //assert.Equal(t, px, Utils.PF.Mul(hx, setup.Pk.Z)) // //assert.Equal(t, len(hx), len(px)-len(setup.Pk.Z)+1) //assert.Equal(t, len(hxQAP), len(px)-len(zxQAP)+1) //// fmt.Println("pk.Z", len(setup.Pk.Z)) //// fmt.Println("zxQAP", len(zxQAP)) // //// piA = g1 * A(t), piB = g2 * B(t), piC = g1 * C(t), piH = g1 * H(t) //proof, err := GenerateProofs(*circuit, setup, w, px) //assert.Nil(t, err) // //// fmt.Println("\n proofs:") //// fmt.Println(proof) // //// fmt.Println("public signals:", proof.PublicSignals) //fmt.Println("\nwitness", w) //// b1 := big.NewInt(int64(1)) //b35 := big.NewInt(int64(35)) //// publicSignals := []*big.Int{b1, b35} //publicSignals := []*big.Int{b35} //before := time.Now() //assert.True(t, VerifyProof(*circuit, setup, proof, publicSignals, true)) //fmt.Println("verify proof time elapsed:", time.Since(before)) }