package circuitcompiler
|
|
|
|
import (
|
|
"crypto/sha256"
|
|
"fmt"
|
|
"github.com/arnaucube/go-snark/bn128"
|
|
"github.com/arnaucube/go-snark/fields"
|
|
"github.com/arnaucube/go-snark/r1csqap"
|
|
"math/big"
|
|
"sync"
|
|
)
|
|
|
|
type utils struct {
|
|
Bn bn128.Bn128
|
|
FqR fields.Fq
|
|
PF r1csqap.PolynomialField
|
|
}
|
|
|
|
type R1CS struct {
|
|
A [][]*big.Int
|
|
B [][]*big.Int
|
|
C [][]*big.Int
|
|
}
|
|
type Program struct {
|
|
functions map[string]*Circuit
|
|
globalInputs []string
|
|
arithmeticEnvironment utils //find a better name
|
|
|
|
//key 1: the hash chain indicating from where the variable is called H( H(main(a,b)) , doSomething(x,z) ), where H is a hash function.
|
|
//value 1 : map
|
|
// with key variable name
|
|
// with value variable name + hash Chain
|
|
//this datastructure is nice but maybe ill replace it later with something less confusing
|
|
//it serves the elementary purpose of not computing a variable a second time.
|
|
//it boosts parse time
|
|
computedInContext map[string]map[string]string
|
|
|
|
//to reduce the number of multiplication gates, we store each factor signature, and the variable name,
|
|
//so each time a variable is computed, that happens to have the very same factors, we reuse the former
|
|
//it boost setup and proof time
|
|
computedFactors map[string]string
|
|
}
|
|
|
|
func (p *Program) GlobalInputCount() int {
|
|
return len(p.globalInputs)
|
|
}
|
|
|
|
func (p *Program) PrintContraintTrees() {
|
|
for k, v := range p.functions {
|
|
fmt.Println(k)
|
|
PrintTree(v.root)
|
|
}
|
|
}
|
|
|
|
func (p *Program) BuildConstraintTrees() {
|
|
|
|
mainRoot := p.getMainCircuit().root
|
|
|
|
//if our programs last operation is not a multiplication gate, we need to introduce on
|
|
if mainRoot.value.Op&(MINUS|PLUS) != 0 {
|
|
newOut := Constraint{Out: "out", V1: "1", V2: "out2", Op: MULTIPLY}
|
|
p.getMainCircuit().addConstraint(&newOut)
|
|
mainRoot.value.Out = "main@out2"
|
|
p.getMainCircuit().gateMap[mainRoot.value.Out] = mainRoot
|
|
}
|
|
|
|
for _, in := range p.getMainCircuit().Inputs {
|
|
p.globalInputs = append(p.globalInputs, in)
|
|
}
|
|
var wg = sync.WaitGroup{}
|
|
|
|
//we build the parse trees concurrently! because we can! go rocks
|
|
for _, circuit := range p.functions {
|
|
wg.Add(1)
|
|
//interesting: if circuit is not passed as argument, the program fails. duno why..
|
|
go func(c *Circuit) {
|
|
c.buildTree(c.root)
|
|
wg.Done()
|
|
}(circuit)
|
|
|
|
}
|
|
wg.Wait()
|
|
return
|
|
|
|
}
|
|
|
|
func (c *Circuit) buildTree(g *gate) {
|
|
if _, ex := c.gateMap[g.value.Out]; ex {
|
|
if g.OperationType()&(IN|CONST) != 0 {
|
|
return
|
|
}
|
|
} else {
|
|
panic(fmt.Sprintf("undefined variable %s", g.value.Out))
|
|
}
|
|
if g.OperationType() == FUNC {
|
|
|
|
for _, in := range g.value.Inputs {
|
|
if gate, ex := c.gateMap[in]; ex {
|
|
g.funcInputs = append(g.funcInputs, gate)
|
|
c.buildTree(gate)
|
|
} else {
|
|
panic(fmt.Sprintf("undefined argument %s", g.value.V1))
|
|
}
|
|
}
|
|
return
|
|
}
|
|
if constr, ex := c.gateMap[g.value.V1]; ex {
|
|
g.left = constr
|
|
c.buildTree(g.left)
|
|
} else {
|
|
panic(fmt.Sprintf("undefined value %s", g.value.V1))
|
|
}
|
|
|
|
if constr, ex := c.gateMap[g.value.V2]; ex {
|
|
g.right = constr
|
|
c.buildTree(g.right)
|
|
} else {
|
|
panic(fmt.Sprintf("undefined value %s", g.value.V2))
|
|
}
|
|
}
|
|
|
|
func (p *Program) ReduceCombinedTree() (orderedmGates []gate) {
|
|
orderedmGates = []gate{}
|
|
p.computedInContext = make(map[string]map[string]string)
|
|
p.computedFactors = make(map[string]string)
|
|
rootHash := []byte{}
|
|
p.computedInContext[string(rootHash)] = make(map[string]string)
|
|
p.r1CSRecursiveBuild(p.getMainCircuit(), p.getMainCircuit().root, rootHash, &orderedmGates, false, false)
|
|
return orderedmGates
|
|
}
|
|
|
|
//recursively walks through the parse tree to create a list of all
|
|
//multiplication gates needed for the QAP construction
|
|
//Takes into account, that multiplication with constants and addition (= substraction) can be reduced, and does so
|
|
func (p *Program) r1CSRecursiveBuild(currentCircuit *Circuit, node *gate, hashTraceBuildup []byte, orderedmGates *[]gate, negate bool, invert bool) (facs []factor, hashTraceResult []byte, variableEnd bool) {
|
|
|
|
if node.OperationType() == CONST {
|
|
b1, v1 := isValue(node.value.Out)
|
|
if !b1 {
|
|
panic("not a constant")
|
|
}
|
|
mul := [2]int{v1, 1}
|
|
if invert {
|
|
mul = [2]int{1, v1}
|
|
|
|
}
|
|
return []factor{{typ: CONST, negate: negate, multiplicative: mul}}, make([]byte, 10), false
|
|
}
|
|
|
|
if node.OperationType() == FUNC {
|
|
nextContext := p.extendedFunctionRenamer(currentCircuit, node.value)
|
|
currentCircuit = nextContext
|
|
node = nextContext.root
|
|
hashTraceBuildup = hashTogether(hashTraceBuildup, []byte(currentCircuit.currentOutputName()))
|
|
if _, ex := p.computedInContext[string(hashTraceBuildup)]; !ex {
|
|
p.computedInContext[string(hashTraceBuildup)] = make(map[string]string)
|
|
}
|
|
|
|
}
|
|
|
|
if node.OperationType() == IN {
|
|
fac := factor{typ: IN, name: node.value.Out, invert: invert, negate: negate, multiplicative: [2]int{1, 1}}
|
|
hashTraceBuildup = hashTogether(hashTraceBuildup, []byte(node.value.Out))
|
|
return []factor{fac}, hashTraceBuildup, true
|
|
}
|
|
|
|
if out, ex := p.computedInContext[string(hashTraceBuildup)][node.value.Out]; ex {
|
|
fac := factor{typ: IN, name: out, invert: invert, negate: negate, multiplicative: [2]int{1, 1}}
|
|
hashTraceBuildup = hashTogether(hashTraceBuildup, []byte(node.value.Out))
|
|
return []factor{fac}, hashTraceBuildup, true
|
|
}
|
|
|
|
leftFactors, leftHash, variableEnd := p.r1CSRecursiveBuild(currentCircuit, node.left, hashTraceBuildup, orderedmGates, negate, invert)
|
|
|
|
rightFactors, rightHash, cons := p.r1CSRecursiveBuild(currentCircuit, node.right, hashTraceBuildup, orderedmGates, Xor(negate, node.value.negate), Xor(invert, node.value.invert))
|
|
|
|
if node.OperationType() == MULTIPLY {
|
|
|
|
if !(variableEnd && cons) && !node.value.invert && node != p.getMainCircuit().root {
|
|
//if !(variableEnd && cons) && !node.value.invert && node != p.getMainCircuit().root {
|
|
return mulFactors(leftFactors, rightFactors), append(leftHash, rightHash...), variableEnd || cons
|
|
}
|
|
sig := factorsSignature(leftFactors, rightFactors)
|
|
if out, ex := p.computedFactors[sig]; ex {
|
|
return []factor{{typ: IN, name: out, invert: invert, negate: negate, multiplicative: [2]int{1, 1}}}, hashTraceBuildup, true
|
|
|
|
}
|
|
|
|
rootGate := cloneGate(node)
|
|
rootGate.index = len(*orderedmGates)
|
|
rootGate.leftIns = leftFactors
|
|
rootGate.rightIns = rightFactors
|
|
out := hashTogether(leftHash, rightHash)
|
|
rootGate.value.V1 = rootGate.value.V1 + string(leftHash[:10])
|
|
rootGate.value.V2 = rootGate.value.V2 + string(rightHash[:10])
|
|
rootGate.value.Out = rootGate.value.Out + string(out[:10])
|
|
p.computedInContext[string(hashTraceBuildup)][node.value.Out] = rootGate.value.Out
|
|
p.computedFactors[sig] = rootGate.value.Out
|
|
*orderedmGates = append(*orderedmGates, *rootGate)
|
|
|
|
hashTraceBuildup = hashTogether(hashTraceBuildup, []byte(rootGate.value.Out))
|
|
|
|
return []factor{{typ: IN, name: rootGate.value.Out, invert: invert, negate: negate, multiplicative: [2]int{1, 1}}}, hashTraceBuildup, true
|
|
}
|
|
|
|
switch node.OperationType() {
|
|
case PLUS:
|
|
return addFactors(leftFactors, rightFactors), hashTogether(leftHash, rightHash), variableEnd || cons
|
|
default:
|
|
panic("unexpected gate")
|
|
}
|
|
|
|
}
|
|
|
|
type factor struct {
|
|
typ Token
|
|
name string
|
|
invert, negate bool
|
|
multiplicative [2]int
|
|
}
|
|
|
|
func (f factor) String() string {
|
|
if f.typ == CONST {
|
|
return fmt.Sprintf("(const fac: %v)", f.multiplicative)
|
|
}
|
|
str := f.name
|
|
if f.invert {
|
|
str += "^-1"
|
|
}
|
|
if f.negate {
|
|
str = "-" + str
|
|
}
|
|
return fmt.Sprintf("(\"%s\" fac: %v)", str, f.multiplicative)
|
|
}
|
|
|
|
func mul2DVector(a, b [2]int) [2]int {
|
|
return [2]int{a[0] * b[0], a[1] * b[1]}
|
|
}
|
|
|
|
func factorsSignature(leftFactors, rightFactors []factor) string {
|
|
hasher.Reset()
|
|
//using a commutative operation here would be better. since a * b = b * a, but H(a,b) != H(b,a)
|
|
//could use (g^a)^b == (g^b)^a where g is a generator of some prime field where the dicrete log is known to be hard
|
|
for _, facLeft := range leftFactors {
|
|
hasher.Write([]byte(facLeft.String()))
|
|
}
|
|
for _, Righ := range rightFactors {
|
|
hasher.Write([]byte(Righ.String()))
|
|
}
|
|
return string(hasher.Sum(nil))[:16]
|
|
}
|
|
|
|
//multiplies factor elements and returns the result
|
|
//in case the factors do not hold any constants and all inputs are distinct, the output will be the concatenation of left+right
|
|
func mulFactors(leftFactors, rightFactors []factor) (result []factor) {
|
|
|
|
for _, facLeft := range leftFactors {
|
|
|
|
for i, facRight := range rightFactors {
|
|
if facLeft.typ == CONST && facRight.typ == IN {
|
|
rightFactors[i] = factor{typ: IN, name: facRight.name, negate: Xor(facLeft.negate, facRight.negate), invert: facRight.invert, multiplicative: mul2DVector(facRight.multiplicative, facLeft.multiplicative)}
|
|
continue
|
|
}
|
|
if facRight.typ == CONST && facLeft.typ == IN {
|
|
rightFactors[i] = factor{typ: IN, name: facLeft.name, negate: Xor(facLeft.negate, facRight.negate), invert: facLeft.invert, multiplicative: mul2DVector(facRight.multiplicative, facLeft.multiplicative)}
|
|
continue
|
|
}
|
|
|
|
if facRight.typ&facLeft.typ == CONST {
|
|
rightFactors[i] = factor{typ: CONST, negate: Xor(facRight.negate, facLeft.negate), multiplicative: mul2DVector(facRight.multiplicative, facLeft.multiplicative)}
|
|
continue
|
|
|
|
}
|
|
//tricky part here
|
|
//this one should only be reached, after a true mgate had its left and right braches computed. here we
|
|
//a factor can appear at most in quadratic form. we reduce terms a*a^-1 here.
|
|
if facRight.typ&facLeft.typ == IN {
|
|
if facLeft.name == facRight.name {
|
|
if facRight.invert != facLeft.invert {
|
|
rightFactors[i] = factor{typ: CONST, negate: Xor(facRight.negate, facLeft.negate), multiplicative: mul2DVector(facRight.multiplicative, facLeft.multiplicative)}
|
|
continue
|
|
}
|
|
}
|
|
|
|
//rightFactors[i] = factor{typ: CONST, negate: Xor(facRight.negate, facLeft.negate), multiplicative: mul2DVector(facRight.multiplicative, facLeft.multiplicative)}
|
|
//continue
|
|
|
|
}
|
|
panic("unexpected. If this errror is thrown, its probably brcause a true multiplication gate has been skipped and treated as on with constant multiplication or addition ")
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return rightFactors
|
|
}
|
|
|
|
//returns the absolute value of a signed int and a flag telling if the input was positive or not
|
|
//this implementation is awesome and fast (see Henry S Warren, Hackers's Delight)
|
|
func abs(n int) (val int, positive bool) {
|
|
y := n >> 63
|
|
return (n ^ y) - y, y == 0
|
|
}
|
|
|
|
//returns the reduced sum of two input factor arrays
|
|
//if no reduction was done (worst case), it returns the concatenation of the input arrays
|
|
func addFactors(leftFactors, rightFactors []factor) []factor {
|
|
var found bool
|
|
res := make([]factor, 0, len(leftFactors)+len(rightFactors))
|
|
for _, facLeft := range leftFactors {
|
|
|
|
found = false
|
|
for i, facRight := range rightFactors {
|
|
|
|
if facLeft.typ&facRight.typ == CONST {
|
|
var a0, b0 = facLeft.multiplicative[0], facRight.multiplicative[0]
|
|
if facLeft.negate {
|
|
a0 *= -1
|
|
}
|
|
if facRight.negate {
|
|
b0 *= -1
|
|
}
|
|
absValue, positive := abs(a0*facRight.multiplicative[1] + facLeft.multiplicative[1]*b0)
|
|
|
|
rightFactors[i] = factor{typ: CONST, negate: !positive, multiplicative: [2]int{absValue, facLeft.multiplicative[1] * facRight.multiplicative[1]}}
|
|
|
|
found = true
|
|
//res = append(res, factor{typ: CONST, negate: negate, multiplicative: [2]int{absValue, facLeft.multiplicative[1] * facRight.multiplicative[1]}})
|
|
break
|
|
}
|
|
if facLeft.typ&facRight.typ == IN && facLeft.invert == facRight.invert && facLeft.name == facRight.name {
|
|
var a0, b0 = facLeft.multiplicative[0], facRight.multiplicative[0]
|
|
if facLeft.negate {
|
|
a0 *= -1
|
|
}
|
|
if facRight.negate {
|
|
b0 *= -1
|
|
}
|
|
absValue, positive := abs(a0*facRight.multiplicative[1] + facLeft.multiplicative[1]*b0)
|
|
|
|
rightFactors[i] = factor{typ: IN, invert: facRight.invert, name: facRight.name, negate: !positive, multiplicative: [2]int{absValue, facLeft.multiplicative[1] * facRight.multiplicative[1]}}
|
|
|
|
found = true
|
|
//res = append(res, factor{typ: CONST, negate: negate, multiplicative: [2]int{absValue, facLeft.multiplicative[1] * facRight.multiplicative[1]}})
|
|
break
|
|
}
|
|
}
|
|
if !found {
|
|
res = append(res, facLeft)
|
|
}
|
|
}
|
|
|
|
for _, val := range rightFactors {
|
|
if val.multiplicative[0] != 0 {
|
|
res = append(res, val)
|
|
}
|
|
}
|
|
|
|
return res
|
|
}
|
|
|
|
//copies a gate neglecting its references to other gates
|
|
func cloneGate(in *gate) (out *gate) {
|
|
constr := &Constraint{Inputs: in.value.Inputs, Out: in.value.Out, Op: in.value.Op, invert: in.value.invert, negate: in.value.negate, V2: in.value.V2, V1: in.value.V1}
|
|
nRightins := make([]factor, len(in.rightIns))
|
|
nLeftInst := make([]factor, len(in.leftIns))
|
|
for k, v := range in.rightIns {
|
|
nRightins[k] = v
|
|
}
|
|
for k, v := range in.leftIns {
|
|
nLeftInst[k] = v
|
|
}
|
|
return &gate{value: constr, leftIns: nLeftInst, rightIns: nRightins, index: in.index}
|
|
}
|
|
|
|
func (p *Program) getMainCircuit() *Circuit {
|
|
return p.functions["main"]
|
|
}
|
|
|
|
func prepareUtils() utils {
|
|
bn, err := bn128.NewBn128()
|
|
if err != nil {
|
|
panic(err)
|
|
}
|
|
// new Finite Field
|
|
fqR := fields.NewFq(bn.R)
|
|
// new Polynomial Field
|
|
pf := r1csqap.NewPolynomialField(fqR)
|
|
|
|
return utils{
|
|
Bn: bn,
|
|
FqR: fqR,
|
|
PF: pf,
|
|
}
|
|
}
|
|
|
|
func (p *Program) extendedFunctionRenamer(contextCircuit *Circuit, constraint *Constraint) (nextContext *Circuit) {
|
|
|
|
if constraint.Op != FUNC {
|
|
panic("not a function")
|
|
}
|
|
//if _, ex := contextCircuit.gateMap[constraint.Out]; !ex {
|
|
// panic("constraint must be within the contextCircuit circuit")
|
|
//}
|
|
b, n, _ := isFunction(constraint.Out)
|
|
if !b {
|
|
panic("not expected")
|
|
}
|
|
if newContext, v := p.functions[n]; v {
|
|
//am i certain that constraint.inputs is alwazs equal to n??? me dont like it
|
|
for i, argument := range constraint.Inputs {
|
|
|
|
isConst, _ := isValue(argument)
|
|
if isConst {
|
|
continue
|
|
}
|
|
isFunc, _, _ := isFunction(argument)
|
|
if isFunc {
|
|
panic("functions as arguments no supported yet")
|
|
//p.extendedFunctionRenamer(contextCircuit,)
|
|
}
|
|
//at this point I assert that argument is a variable. This can become troublesome later
|
|
//first we get the circuit in which the argument was created
|
|
inputOriginCircuit := p.functions[getContextFromVariable(argument)]
|
|
|
|
//we pick the gate that has the argument as output
|
|
if gate, ex := inputOriginCircuit.gateMap[argument]; ex {
|
|
//we pick the old circuit inputs and let them now reference the same as the argument gate did,
|
|
oldGate := newContext.gateMap[newContext.Inputs[i]]
|
|
//we take the old gate which was nothing but a input
|
|
//and link this input to its constituents coming from the calling contextCircuit.
|
|
//i think this is pretty neat
|
|
oldGate.value = gate.value
|
|
oldGate.right = gate.right
|
|
oldGate.left = gate.left
|
|
|
|
} else {
|
|
panic("not expected")
|
|
}
|
|
}
|
|
//newContext.renameInputs(constraint.Inputs)
|
|
return newContext
|
|
}
|
|
|
|
return nil
|
|
}
|
|
|
|
func NewProgram() (p *Program) {
|
|
p = &Program{
|
|
functions: map[string]*Circuit{},
|
|
globalInputs: []string{"one"},
|
|
arithmeticEnvironment: prepareUtils(),
|
|
}
|
|
return
|
|
}
|
|
|
|
// GenerateR1CS generates the R1CS polynomials from the Circuit
|
|
func (p *Program) GenerateReducedR1CS(mGates []gate) (r1CS R1CS) {
|
|
// from flat code to R1CS
|
|
|
|
offset := len(p.globalInputs)
|
|
// one + in1 +in2+... + gate1 + gate2 .. + out
|
|
size := offset + len(mGates)
|
|
indexMap := make(map[string]int)
|
|
|
|
for i, v := range p.globalInputs {
|
|
indexMap[v] = i
|
|
|
|
}
|
|
for i, v := range mGates {
|
|
indexMap[v.value.Out] = i + offset
|
|
}
|
|
|
|
for _, g := range mGates {
|
|
|
|
if g.OperationType() == MULTIPLY {
|
|
aConstraint := r1csqap.ArrayOfBigZeros(size)
|
|
bConstraint := r1csqap.ArrayOfBigZeros(size)
|
|
cConstraint := r1csqap.ArrayOfBigZeros(size)
|
|
|
|
insertValue := func(val factor, arr []*big.Int) {
|
|
if val.typ != CONST {
|
|
if _, ex := indexMap[val.name]; !ex {
|
|
panic(fmt.Sprintf("%v index not found!!!", val.name))
|
|
}
|
|
}
|
|
value := new(big.Int).Add(new(big.Int), fractionToField(val.multiplicative))
|
|
if val.negate {
|
|
value.Neg(value)
|
|
}
|
|
//not that index is 0 if its a constant, since 0 is the map default if no entry was found
|
|
arr[indexMap[val.name]] = value
|
|
}
|
|
|
|
for _, val := range g.leftIns {
|
|
insertValue(val, aConstraint)
|
|
}
|
|
|
|
for _, val := range g.rightIns {
|
|
insertValue(val, bConstraint)
|
|
}
|
|
|
|
cConstraint[indexMap[g.value.Out]] = big.NewInt(int64(1))
|
|
|
|
if g.value.invert {
|
|
tmp := aConstraint
|
|
aConstraint = cConstraint
|
|
cConstraint = tmp
|
|
}
|
|
r1CS.A = append(r1CS.A, aConstraint)
|
|
r1CS.B = append(r1CS.B, bConstraint)
|
|
r1CS.C = append(r1CS.C, cConstraint)
|
|
|
|
} else {
|
|
panic("not a m gate")
|
|
}
|
|
}
|
|
|
|
return
|
|
}
|
|
|
|
var Utils = prepareUtils()
|
|
|
|
func fractionToField(in [2]int) *big.Int {
|
|
return Utils.FqR.Mul(big.NewInt(int64(in[0])), Utils.FqR.Inverse(big.NewInt(int64(in[1]))))
|
|
|
|
}
|
|
|
|
//Calculates the witness (program trace) given some input
|
|
//asserts that R1CS has been computed and is stored in the program p memory calling this function
|
|
func CalculateWitness(input []*big.Int, r1cs R1CS) (witness []*big.Int) {
|
|
|
|
witness = r1csqap.ArrayOfBigZeros(len(r1cs.A[0]))
|
|
set := make([]bool, len(witness))
|
|
witness[0] = big.NewInt(int64(1))
|
|
set[0] = true
|
|
|
|
for i := range input {
|
|
witness[i+1] = input[i]
|
|
set[i+1] = true
|
|
}
|
|
|
|
zero := big.NewInt(int64(0))
|
|
|
|
for i := 0; i < len(r1cs.A); i++ {
|
|
gatesLeftInputs := r1cs.A[i]
|
|
gatesRightInputs := r1cs.B[i]
|
|
gatesOutputs := r1cs.C[i]
|
|
|
|
sumLeft := big.NewInt(int64(0))
|
|
sumRight := big.NewInt(int64(0))
|
|
sumOut := big.NewInt(int64(0))
|
|
|
|
index := -1
|
|
division := false
|
|
for j, val := range gatesLeftInputs {
|
|
if val.Cmp(zero) != 0 {
|
|
if !set[j] {
|
|
index = j
|
|
division = true
|
|
break
|
|
}
|
|
sumLeft.Add(sumLeft, new(big.Int).Mul(val, witness[j]))
|
|
}
|
|
}
|
|
for j, val := range gatesRightInputs {
|
|
if val.Cmp(zero) != 0 {
|
|
sumRight.Add(sumRight, new(big.Int).Mul(val, witness[j]))
|
|
}
|
|
}
|
|
|
|
for j, val := range gatesOutputs {
|
|
if val.Cmp(zero) != 0 {
|
|
if !set[j] {
|
|
if index != -1 {
|
|
panic("invalid R1CS form")
|
|
}
|
|
|
|
index = j
|
|
break
|
|
}
|
|
sumOut.Add(sumOut, new(big.Int).Mul(val, witness[j]))
|
|
}
|
|
}
|
|
|
|
if !division {
|
|
set[index] = true
|
|
witness[index] = new(big.Int).Mul(sumLeft, sumRight)
|
|
|
|
} else {
|
|
b := sumRight.Int64()
|
|
c := sumOut.Int64()
|
|
set[index] = true
|
|
//TODO replace with proper multiplication of b^-1 within the finite field
|
|
witness[index] = big.NewInt(c / b)
|
|
//Utils.FqR.Mul(sumOut, Utils.FqR.Inverse(sumRight))
|
|
}
|
|
|
|
}
|
|
|
|
return
|
|
}
|
|
|
|
var hasher = sha256.New()
|
|
|
|
func hashTogether(a, b []byte) []byte {
|
|
hasher.Reset()
|
|
hasher.Write(a)
|
|
hasher.Write(b)
|
|
return hasher.Sum(nil)
|
|
}
|