package circuitcompiler
|
|
|
|
import (
|
|
"fmt"
|
|
"github.com/mottla/go-snark/bn128"
|
|
"github.com/mottla/go-snark/fields"
|
|
"github.com/mottla/go-snark/r1csqap"
|
|
"math/big"
|
|
)
|
|
|
|
type utils struct {
|
|
Bn bn128.Bn128
|
|
FqR fields.Fq
|
|
PF r1csqap.PolynomialField
|
|
}
|
|
|
|
type Program struct {
|
|
functions map[string]*Circuit
|
|
globalInputs []Constraint
|
|
arithmeticEnvironment utils //find a better name
|
|
extendedFunctionRenamer func(context *Circuit, c Constraint) (newContext *Circuit)
|
|
R1CS struct {
|
|
A [][]*big.Int
|
|
B [][]*big.Int
|
|
C [][]*big.Int
|
|
}
|
|
}
|
|
|
|
func (p *Program) PrintContraintTrees() {
|
|
for k, v := range p.functions {
|
|
fmt.Println(k)
|
|
PrintTree(v.root)
|
|
}
|
|
}
|
|
|
|
func (p *Program) BuildConstraintTrees() {
|
|
|
|
functionRootMap := make(map[string]*gate)
|
|
for _, circuit := range p.functions {
|
|
//circuit.addConstraint(p.oneConstraint())
|
|
fName := composeNewFunction(circuit.Name, circuit.Inputs)
|
|
root := circuit.gateMap[fName]
|
|
functionRootMap[fName] = root
|
|
circuit.root = root
|
|
circuit.buildTree(root)
|
|
}
|
|
|
|
return
|
|
|
|
}
|
|
|
|
func (c *Circuit) buildTree(g *gate) {
|
|
if _, ex := c.gateMap[g.value.Out]; ex {
|
|
if g.OperationType()&(IN|CONST) != 0 {
|
|
return
|
|
}
|
|
} else {
|
|
panic(fmt.Sprintf("undefined variable %s", g.value.Out))
|
|
}
|
|
if g.OperationType() == FUNC {
|
|
//g.funcInputs = []*gate{}
|
|
for _, in := range g.value.Inputs {
|
|
if gate, ex := c.gateMap[in]; ex {
|
|
//sadf
|
|
|
|
g.funcInputs = append(g.funcInputs, gate)
|
|
//note that we do repeated work here. the argument
|
|
c.buildTree(gate)
|
|
} else {
|
|
panic(fmt.Sprintf("undefined argument %s", g.value.V1))
|
|
}
|
|
}
|
|
return
|
|
}
|
|
if constr, ex := c.gateMap[g.value.V1]; ex {
|
|
g.left = constr
|
|
c.buildTree(g.left)
|
|
} else {
|
|
panic(fmt.Sprintf("undefined value %s", g.value.V1))
|
|
}
|
|
|
|
if constr, ex := c.gateMap[g.value.V2]; ex {
|
|
g.right = constr
|
|
c.buildTree(g.right)
|
|
} else {
|
|
panic(fmt.Sprintf("undefined value %s", g.value.V2))
|
|
}
|
|
}
|
|
|
|
func (p *Program) ReduceCombinedTree() (orderedmGates []gate) {
|
|
mGatesUsed := make(map[string]bool)
|
|
orderedmGates = []gate{}
|
|
functionRootMap := make(map[string]*gate)
|
|
for k, v := range p.functions {
|
|
functionRootMap[k] = v.root
|
|
}
|
|
|
|
p.extendedFunctionRenamer = func(context *Circuit, c Constraint) (nextContext *Circuit) {
|
|
if c.Op != FUNC {
|
|
panic("not a function")
|
|
}
|
|
if _, ex := context.gateMap[c.Out]; !ex {
|
|
panic("constraint mus be within the context circuit")
|
|
}
|
|
|
|
if b, name, in := isFunction(c.Out); b {
|
|
if newContext, v := p.functions[name]; v {
|
|
//fmt.Println("unrenamed thing")
|
|
//PrintTree(k.root)
|
|
for i, argument := range in {
|
|
if gate, ex := context.gateMap[argument]; ex {
|
|
oldGate := newContext.gateMap[newContext.Inputs[i]]
|
|
//we take the old gate which was nothing but a input
|
|
//and link this input to its constituents comming from the calling context.
|
|
//i think this is pretty neat
|
|
oldGate.value = gate.value
|
|
oldGate.right = gate.right
|
|
oldGate.left = gate.left
|
|
|
|
} else {
|
|
panic("not expected")
|
|
}
|
|
}
|
|
|
|
newContext.renameInputs(in)
|
|
|
|
//fmt.Println("renamed thing")
|
|
//PrintTree(k.root)
|
|
return newContext
|
|
}
|
|
}
|
|
panic("not a function dude")
|
|
return nil
|
|
}
|
|
//traverseCombinedMultiplicationGates(p.getMainCircut().root, mGatesUsed, &orderedmGates, functionRootMap, functionRenamer, false, false)
|
|
|
|
//markMgates(p.getMainCircut().root, mGatesUsed, &orderedmGates, functionRenamer, false, false)
|
|
p.markMgates2(p.getMainCircut(), p.getMainCircut().root, mGatesUsed, &orderedmGates, false, false)
|
|
return orderedmGates
|
|
}
|
|
|
|
func (p *Program) markMgates2(contextCircut *Circuit, root *gate, mGatesUsed map[string]bool, orderedmGates *[]gate, negate bool, inverse bool) (isConstant bool) {
|
|
|
|
if root.OperationType() == IN {
|
|
return false
|
|
}
|
|
|
|
if root.OperationType() == CONST {
|
|
return true
|
|
}
|
|
|
|
if root.OperationType() == FUNC {
|
|
nextContext := p.extendedFunctionRenamer(contextCircut, root.value)
|
|
isConstant = p.markMgates2(nextContext, nextContext.root, mGatesUsed, orderedmGates, negate, inverse)
|
|
} else {
|
|
if _, alreadyComputed := mGatesUsed[root.value.V1]; !alreadyComputed {
|
|
isConstant = p.markMgates2(contextCircut, root.left, mGatesUsed, orderedmGates, negate, inverse)
|
|
}
|
|
|
|
if _, alreadyComputed := mGatesUsed[root.value.V2]; !alreadyComputed {
|
|
cons := p.markMgates2(contextCircut, root.right, mGatesUsed, orderedmGates, Xor(negate, root.value.negate), Xor(inverse, root.value.invert))
|
|
isConstant = isConstant || cons
|
|
}
|
|
}
|
|
|
|
if root.OperationType() == MULTIPLY {
|
|
|
|
_, n, _ := isFunction(root.value.Out)
|
|
if isConstant && !root.value.invert && n != "main" {
|
|
return false
|
|
}
|
|
root.leftIns = p.collectAtomsInSubtree2(contextCircut, root.left, mGatesUsed, false, false)
|
|
//if root.left.value.Out== root.right.value.Out{
|
|
// //note this is not a full copy, but shouldnt be a problem
|
|
// root.rightIns= root.leftIns
|
|
//}else{
|
|
// collectAtomsInSubtree(root.right, mGatesUsed, 1, root.rightIns, functionRootMap, Xor(negate, root.value.negate), Xor(inverse, root.value.invert))
|
|
//}
|
|
//root.rightIns = collectAtomsInSubtree3(root.right, mGatesUsed, Xor(negate, root.value.negate), Xor(inverse, root.value.invert))
|
|
root.rightIns = p.collectAtomsInSubtree2(contextCircut, root.right, mGatesUsed, false, false)
|
|
root.index = len(mGatesUsed)
|
|
mGatesUsed[root.value.Out] = true
|
|
rootGate := cloneGate(root)
|
|
*orderedmGates = append(*orderedmGates, *rootGate)
|
|
|
|
}
|
|
|
|
return isConstant
|
|
//TODO optimize if output is not a multipication gate
|
|
}
|
|
|
|
type factor struct {
|
|
typ Token
|
|
name string
|
|
invert, negate bool
|
|
multiplicative [2]int
|
|
}
|
|
|
|
func (f factor) String() string {
|
|
if f.typ == CONST {
|
|
return fmt.Sprintf("(const fac: %v)", f.multiplicative)
|
|
}
|
|
str := f.name
|
|
if f.invert {
|
|
str += "^-1"
|
|
}
|
|
if f.negate {
|
|
str = "-" + str
|
|
}
|
|
return fmt.Sprintf("(\"%s\" fac: %v)", str, f.multiplicative)
|
|
}
|
|
|
|
func mul2DVector(a, b [2]int) [2]int {
|
|
return [2]int{a[0] * b[0], a[1] * b[1]}
|
|
}
|
|
|
|
func mulFactors(leftFactors, rightFactors []factor) (result []factor) {
|
|
|
|
for _, facLeft := range leftFactors {
|
|
|
|
for i, facRight := range rightFactors {
|
|
if facLeft.typ == CONST && facRight.typ == IN {
|
|
rightFactors[i] = factor{typ: IN, name: facRight.name, negate: Xor(facLeft.negate, facRight.negate), invert: facRight.invert, multiplicative: mul2DVector(facRight.multiplicative, facLeft.multiplicative)}
|
|
continue
|
|
}
|
|
if facRight.typ == CONST && facLeft.typ == IN {
|
|
rightFactors[i] = factor{typ: IN, name: facLeft.name, negate: Xor(facLeft.negate, facRight.negate), invert: facLeft.invert, multiplicative: mul2DVector(facRight.multiplicative, facLeft.multiplicative)}
|
|
continue
|
|
}
|
|
|
|
if facRight.typ&facLeft.typ == CONST {
|
|
rightFactors[i] = factor{typ: CONST, negate: Xor(facRight.negate, facLeft.negate), multiplicative: mul2DVector(facRight.multiplicative, facLeft.multiplicative)}
|
|
continue
|
|
|
|
}
|
|
//tricky part here
|
|
//this one should only be reached, after a true mgate had its left and right braches computed. here we
|
|
//a factor can appear at most in quadratic form. we reduce terms a*a^-1 here.
|
|
if facRight.typ&facLeft.typ == IN {
|
|
//if facRight.n
|
|
//rightFactors[i] = factor{typ: CONST, negate: Xor(facRight.negate, facLeft.negate), multiplicative: mul2DVector(facRight.multiplicative, facLeft.multiplicative)}
|
|
//continue
|
|
|
|
}
|
|
panic("unexpected")
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return rightFactors
|
|
}
|
|
|
|
//returns the absolute value of a signed int and a flag telling if the input was positive or not
|
|
//this implementation is awesome and fast (see Henry S Warren, Hackers's Delight)
|
|
func abs(n int) (val int, positive bool) {
|
|
y := n >> 63
|
|
return (n ^ y) - y, y == 0
|
|
}
|
|
|
|
//returns the reduced sum of two input factor arrays
|
|
//if no reduction was done (worst case), it returns the concatenation of the input arrays
|
|
func addFactors(leftFactors, rightFactors []factor) (res []factor) {
|
|
var found bool
|
|
for _, facLeft := range leftFactors {
|
|
|
|
for i, facRight := range rightFactors {
|
|
|
|
if facLeft.typ&facRight.typ == CONST {
|
|
var a0, b0 = facLeft.multiplicative[0], facRight.multiplicative[0]
|
|
if facLeft.negate {
|
|
a0 *= -1
|
|
}
|
|
if facRight.negate {
|
|
b0 *= -1
|
|
}
|
|
absValue, negate := abs(a0*facRight.multiplicative[1] + facLeft.multiplicative[1]*b0)
|
|
rightFactors[i] = factor{typ: CONST, negate: negate, multiplicative: [2]int{absValue, facLeft.multiplicative[1] * facRight.multiplicative[1]}}
|
|
found = true
|
|
//res = append(res, factor{typ: CONST, negate: negate, multiplicative: [2]int{absValue, facLeft.multiplicative[1] * facRight.multiplicative[1]}})
|
|
break
|
|
}
|
|
if facLeft.typ&facRight.typ == IN && facLeft.invert == facRight.invert && facLeft.name == facRight.name {
|
|
var a0, b0 = facLeft.multiplicative[0], facRight.multiplicative[0]
|
|
if facLeft.negate {
|
|
a0 *= -1
|
|
}
|
|
if facRight.negate {
|
|
b0 *= -1
|
|
}
|
|
absValue, negate := abs(a0*facRight.multiplicative[1] + facLeft.multiplicative[1]*b0)
|
|
rightFactors[i] = factor{typ: IN, invert: facRight.invert, name: facRight.name, negate: negate, multiplicative: [2]int{absValue, facLeft.multiplicative[1] * facRight.multiplicative[1]}}
|
|
found = true
|
|
//res = append(res, factor{typ: CONST, negate: negate, multiplicative: [2]int{absValue, facLeft.multiplicative[1] * facRight.multiplicative[1]}})
|
|
break
|
|
}
|
|
}
|
|
if !found {
|
|
res = append(res, facLeft)
|
|
found = false
|
|
}
|
|
}
|
|
return append(res, rightFactors...)
|
|
}
|
|
|
|
func (p *Program) collectAtomsInSubtree2(contextCircut *Circuit, g *gate, mGatesUsed map[string]bool, negate bool, invert bool) []factor {
|
|
|
|
if _, ex := mGatesUsed[g.value.Out]; ex {
|
|
return []factor{{typ: IN, name: g.value.Out, invert: invert, negate: negate, multiplicative: [2]int{1, 1}}}
|
|
}
|
|
|
|
if g.OperationType() == IN {
|
|
return []factor{{typ: IN, name: g.value.Out, invert: invert, negate: negate, multiplicative: [2]int{1, 1}}}
|
|
}
|
|
if g.OperationType() == FUNC {
|
|
nextContext := p.extendedFunctionRenamer(contextCircut, g.value)
|
|
return p.collectAtomsInSubtree2(nextContext, nextContext.root, mGatesUsed, negate, invert)
|
|
}
|
|
|
|
if g.OperationType() == CONST {
|
|
b1, v1 := isValue(g.value.Out)
|
|
if !b1 {
|
|
panic("not a constant")
|
|
}
|
|
if invert {
|
|
return []factor{{typ: CONST, negate: negate, multiplicative: [2]int{1, v1}}}
|
|
}
|
|
return []factor{{typ: CONST, negate: negate, multiplicative: [2]int{v1, 1}}}
|
|
}
|
|
|
|
var leftFactors, rightFactors []factor
|
|
if g.left.OperationType() == FUNC {
|
|
nextContext := p.extendedFunctionRenamer(contextCircut, g.left.value)
|
|
leftFactors = p.collectAtomsInSubtree2(nextContext, nextContext.root, mGatesUsed, negate, invert)
|
|
} else {
|
|
leftFactors = p.collectAtomsInSubtree2(contextCircut, g.left, mGatesUsed, negate, invert)
|
|
}
|
|
|
|
if g.right.OperationType() == FUNC {
|
|
nextContext := p.extendedFunctionRenamer(contextCircut, g.right.value)
|
|
rightFactors = p.collectAtomsInSubtree2(nextContext, nextContext.root, mGatesUsed, Xor(negate, g.value.negate), Xor(invert, g.value.invert))
|
|
} else {
|
|
rightFactors = p.collectAtomsInSubtree2(contextCircut, g.right, mGatesUsed, Xor(negate, g.value.negate), Xor(invert, g.value.invert))
|
|
}
|
|
|
|
switch g.OperationType() {
|
|
case MULTIPLY:
|
|
return mulFactors(leftFactors, rightFactors)
|
|
case PLUS:
|
|
return addFactors(leftFactors, rightFactors)
|
|
default:
|
|
panic("unexpected gate")
|
|
}
|
|
|
|
}
|
|
|
|
//copies a gate neglecting its references to other gates
|
|
func cloneGate(in *gate) (out *gate) {
|
|
constr := Constraint{Inputs: in.value.Inputs, Out: in.value.Out, Op: in.value.Op, invert: in.value.invert, negate: in.value.negate, V2: in.value.V2, V1: in.value.V1}
|
|
nRightins := make([]factor, len(in.rightIns))
|
|
nLeftInst := make([]factor, len(in.leftIns))
|
|
for k, v := range in.rightIns {
|
|
nRightins[k] = v
|
|
}
|
|
for k, v := range in.leftIns {
|
|
nLeftInst[k] = v
|
|
}
|
|
return &gate{value: constr, leftIns: nLeftInst, rightIns: nRightins, index: in.index}
|
|
}
|
|
|
|
func (p *Program) getMainCircut() *Circuit {
|
|
return p.functions["main"]
|
|
}
|
|
|
|
func (p *Program) addGlobalInput(c Constraint) {
|
|
p.globalInputs = append(p.globalInputs, c)
|
|
}
|
|
|
|
func prepareUtils() utils {
|
|
bn, err := bn128.NewBn128()
|
|
if err != nil {
|
|
panic(err)
|
|
}
|
|
// new Finite Field
|
|
fqR := fields.NewFq(bn.R)
|
|
// new Polynomial Field
|
|
pf := r1csqap.NewPolynomialField(fqR)
|
|
|
|
return utils{
|
|
Bn: bn,
|
|
FqR: fqR,
|
|
PF: pf,
|
|
}
|
|
}
|
|
func NewProgramm() *Program {
|
|
|
|
//return &Program{functions: map[string]*Circuit{}, signals: []string{}, globalInputs: []*Constraint{{Op: PLUS, V1:"1",V2:"0", Out: "one"}}}
|
|
return &Program{functions: map[string]*Circuit{}, globalInputs: []Constraint{{Op: IN, Out: "one"}}, arithmeticEnvironment: prepareUtils()}
|
|
}
|
|
|
|
func (p *Program) addFunction(constraint *Constraint) (c *Circuit) {
|
|
name := constraint.Out
|
|
fmt.Println("try to add function ", name)
|
|
|
|
b, name2, _ := isFunction(name)
|
|
if !b {
|
|
panic(fmt.Sprintf("not a function: %v", constraint))
|
|
}
|
|
name = name2
|
|
|
|
if _, ex := p.functions[name]; ex {
|
|
panic("function already declared")
|
|
}
|
|
|
|
c = newCircuit(name)
|
|
|
|
p.functions[name] = c
|
|
|
|
//I need the inputs to be defined as input constraints for each function for later renaming conventions
|
|
//if constraint.Literal == "main" {
|
|
for _, in := range constraint.Inputs {
|
|
newConstr := Constraint{
|
|
Op: IN,
|
|
Out: in,
|
|
}
|
|
if name == "main" {
|
|
p.addGlobalInput(newConstr)
|
|
}
|
|
c.addConstraint(newConstr)
|
|
}
|
|
//}
|
|
|
|
c.Inputs = constraint.Inputs
|
|
return
|
|
|
|
}
|
|
|
|
// GenerateR1CS generates the R1CS polynomials from the Circuit
|
|
func (p *Program) GenerateReducedR1CS(mGates []gate) (a, b, c [][]*big.Int) {
|
|
// from flat code to R1CS
|
|
|
|
offset := len(p.globalInputs)
|
|
// one + in1 +in2+... + gate1 + gate2 .. + out
|
|
size := offset + len(mGates)
|
|
indexMap := make(map[string]int)
|
|
|
|
for i, v := range p.globalInputs {
|
|
indexMap[v.Out] = i
|
|
|
|
}
|
|
for i, v := range mGates {
|
|
indexMap[v.value.Out] = i + offset
|
|
}
|
|
|
|
for _, gate := range mGates {
|
|
|
|
if gate.OperationType() == MULTIPLY {
|
|
aConstraint := r1csqap.ArrayOfBigZeros(size)
|
|
bConstraint := r1csqap.ArrayOfBigZeros(size)
|
|
cConstraint := r1csqap.ArrayOfBigZeros(size)
|
|
|
|
for _, val := range gate.leftIns {
|
|
convertAndInsertFactorAt(aConstraint, val, indexMap[val.name])
|
|
}
|
|
|
|
for _, val := range gate.rightIns {
|
|
convertAndInsertFactorAt(bConstraint, val, indexMap[val.name])
|
|
}
|
|
|
|
cConstraint[indexMap[gate.value.Out]] = big.NewInt(int64(1))
|
|
|
|
if gate.value.invert {
|
|
tmp := aConstraint
|
|
aConstraint = cConstraint
|
|
cConstraint = tmp
|
|
}
|
|
a = append(a, aConstraint)
|
|
b = append(b, bConstraint)
|
|
c = append(c, cConstraint)
|
|
|
|
} else {
|
|
panic("not a m gate")
|
|
}
|
|
}
|
|
p.R1CS.A = a
|
|
p.R1CS.B = b
|
|
p.R1CS.C = c
|
|
return a, b, c
|
|
}
|
|
|
|
var Utils = prepareUtils()
|
|
|
|
func fractionToField(in [2]int) *big.Int {
|
|
return Utils.FqR.Mul(big.NewInt(int64(in[0])), Utils.FqR.Inverse(big.NewInt(int64(in[1]))))
|
|
|
|
}
|
|
|
|
func convertAndInsertFactorAt(arr []*big.Int, val factor, index int) {
|
|
if val.typ == CONST {
|
|
arr[0] = new(big.Int).Add(arr[0], fractionToField(val.multiplicative))
|
|
return
|
|
}
|
|
arr[index] = new(big.Int).Add(arr[index], fractionToField(val.multiplicative))
|
|
|
|
}
|
|
|
|
func (p *Program) CalculateWitness(input []*big.Int) (witness []*big.Int) {
|
|
|
|
if len(p.globalInputs)-1 != len(input) {
|
|
panic("input do not match the required inputs")
|
|
}
|
|
|
|
witness = r1csqap.ArrayOfBigZeros(len(p.R1CS.A[0]))
|
|
set := make([]bool, len(witness))
|
|
witness[0] = big.NewInt(int64(1))
|
|
set[0] = true
|
|
|
|
for i := range input {
|
|
witness[i+1] = input[i]
|
|
set[i+1] = true
|
|
}
|
|
|
|
zero := big.NewInt(int64(0))
|
|
|
|
for i := 0; i < len(p.R1CS.A); i++ {
|
|
gatesLeftInputs := p.R1CS.A[i]
|
|
gatesRightInputs := p.R1CS.B[i]
|
|
gatesOutputs := p.R1CS.C[i]
|
|
|
|
sumLeft := big.NewInt(int64(0))
|
|
sumRight := big.NewInt(int64(0))
|
|
sumOut := big.NewInt(int64(0))
|
|
|
|
index := -1
|
|
division := false
|
|
for j, val := range gatesLeftInputs {
|
|
if val.Cmp(zero) != 0 {
|
|
if !set[j] {
|
|
index = j
|
|
division = true
|
|
break
|
|
}
|
|
sumLeft.Add(sumLeft, new(big.Int).Mul(val, witness[j]))
|
|
}
|
|
}
|
|
for j, val := range gatesRightInputs {
|
|
if val.Cmp(zero) != 0 {
|
|
sumRight.Add(sumRight, new(big.Int).Mul(val, witness[j]))
|
|
}
|
|
}
|
|
|
|
for j, val := range gatesOutputs {
|
|
if val.Cmp(zero) != 0 {
|
|
if !set[j] {
|
|
if index != -1 {
|
|
panic("invalid R1CS form")
|
|
}
|
|
|
|
index = j
|
|
break
|
|
}
|
|
sumOut.Add(sumOut, new(big.Int).Mul(val, witness[j]))
|
|
}
|
|
}
|
|
|
|
if !division {
|
|
set[index] = true
|
|
witness[index] = new(big.Int).Mul(sumLeft, sumRight)
|
|
|
|
} else {
|
|
b := sumRight.Int64()
|
|
c := sumOut.Int64()
|
|
set[index] = true
|
|
witness[index] = big.NewInt(c / b)
|
|
}
|
|
|
|
}
|
|
|
|
return
|
|
}
|