You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 

233 lines
5.9 KiB

package r1csqap
import (
"math/big"
"github.com/arnaucube/go-snark/fields"
)
var bigZero = big.NewInt(int64(0))
// Transpose transposes the *big.Int matrix
func Transpose(matrix [][]*big.Int) [][]*big.Int {
r := make([][]*big.Int, len(matrix[0]))
for x, _ := range r {
r[x] = make([]*big.Int, len(matrix))
}
for y, s := range matrix {
for x, e := range s {
r[x][y] = e
}
}
return r
}
// ArrayOfBigZeros creates a *big.Int array with n elements to zero
func ArrayOfBigZeros(num int) []*big.Int {
var r = make([]*big.Int, num, num)
for i := 0; i < num; i++ {
r[i] = bigZero
}
return r
}
func BigArraysEqual(a, b []*big.Int) bool {
if len(a) != len(b) {
return false
}
for i := 0; i < len(a); i++ {
if a[i].Cmp(b[i]) != 0 {
return false
}
}
return true
}
// PolynomialField is the Polynomial over a Finite Field where the polynomial operations are performed
type PolynomialField struct {
F fields.Fq
}
// NewPolynomialField creates a new PolynomialField with the given FiniteField
func NewPolynomialField(f fields.Fq) PolynomialField {
return PolynomialField{
f,
}
}
// Mul multiplies two polinomials over the Finite Field
func (pf PolynomialField) Mul(a, b []*big.Int) []*big.Int {
r := ArrayOfBigZeros(len(a) + len(b) - 1)
for i := 0; i < len(a); i++ {
for j := 0; j < len(b); j++ {
r[i+j] = pf.F.Add(
r[i+j],
pf.F.Mul(a[i], b[j]))
}
}
return r
}
// Div divides two polinomials over the Finite Field, returning the result and the remainder
func (pf PolynomialField) Div(a, b []*big.Int) ([]*big.Int, []*big.Int) {
// https://en.wikipedia.org/wiki/Division_algorithm
r := ArrayOfBigZeros(len(a) - len(b) + 1)
rem := a
for len(rem) >= len(b) {
l := pf.F.Div(rem[len(rem)-1], b[len(b)-1])
pos := len(rem) - len(b)
r[pos] = l
aux := ArrayOfBigZeros(pos)
aux1 := append(aux, l)
aux2 := pf.Sub(rem, pf.Mul(b, aux1))
rem = aux2[:len(aux2)-1]
}
return r, rem
}
func max(a, b int) int {
if a > b {
return a
}
return b
}
// Add adds two polinomials over the Finite Field
func (pf PolynomialField) Add(a, b []*big.Int) []*big.Int {
r := ArrayOfBigZeros(max(len(a), len(b)))
for i := 0; i < len(a); i++ {
r[i] = pf.F.Add(r[i], a[i])
}
for i := 0; i < len(b); i++ {
r[i] = pf.F.Add(r[i], b[i])
}
return r
}
// Sub subtracts two polinomials over the Finite Field
func (pf PolynomialField) Sub(a, b []*big.Int) []*big.Int {
r := ArrayOfBigZeros(max(len(a), len(b)))
for i := 0; i < len(a); i++ {
r[i] = pf.F.Add(r[i], a[i])
}
for i := 0; i < len(b); i++ {
r[i] = pf.F.Sub(r[i], b[i])
}
return r
}
// Eval evaluates the polinomial over the Finite Field at the given value x
func (pf PolynomialField) Eval(v []*big.Int, x *big.Int) *big.Int {
r := big.NewInt(int64(0))
for i := 0; i < len(v); i++ {
xi := pf.F.Exp(x, big.NewInt(int64(i)))
elem := pf.F.Mul(v[i], xi)
r = pf.F.Add(r, elem)
}
return r
}
// NewPolZeroAt generates a new polynomial that has value zero at the given value
func (pf PolynomialField) NewPolZeroAt(pointPos, totalPoints int, height *big.Int) []*big.Int {
//todo note that this will blow up. big may be necessary
fac := 1
//(xj-x0)(xj-x1)..(xj-x_j-1)(xj-x_j+1)..(x_j-x_k)
for i := 1; i < totalPoints+1; i++ {
if i != pointPos {
fac = fac * (pointPos - i)
}
}
facBig := big.NewInt(int64(fac))
hf := pf.F.Div(height, facBig)
r := []*big.Int{hf}
for i := 1; i < totalPoints+1; i++ {
if i != pointPos {
ineg := big.NewInt(int64(-i))
//is b1 necessary?
b1 := big.NewInt(int64(1))
r = pf.Mul(r, []*big.Int{ineg, b1})
}
}
return r
}
// LagrangeInterpolation performs the Lagrange Interpolation / Lagrange Polynomials operation
func (pf PolynomialField) LagrangeInterpolation(v []*big.Int) []*big.Int {
// https://en.wikipedia.org/wiki/Lagrange_polynomial
var r []*big.Int
for i := 0; i < len(v); i++ {
//NOTE this comparison gives a huge performance boost
if v[i].Cmp(bigZero) != 0 {
r = pf.Add(r, pf.NewPolZeroAt(i+1, len(v), v[i]))
}
//r = pf.Mul(v[i], pf.NewPolZeroAt(i+1, len(v), v[i]))
}
//
return r
}
// R1CSToQAP converts the R1CS values to the QAP values
//it uses Lagrange interpolation to to fit a polynomial through each slice. The x coordinate
//is simply a linear increment starting at 1
//within this process, the polynomial is evaluated at position 0
//so an alpha/beta/gamma value is the polynomial evaluated at 0
// the domain polynomial therefor is (-1+x)(-2+x)...(-n+x)
func (pf PolynomialField) R1CSToQAP(a, b, c [][]*big.Int) (alphas [][]*big.Int, betas [][]*big.Int, gammas [][]*big.Int, domain []*big.Int) {
aT := Transpose(a)
bT := Transpose(b)
cT := Transpose(c)
for i := 0; i < len(aT); i++ {
alphas = append(alphas, pf.LagrangeInterpolation(aT[i]))
}
for i := 0; i < len(bT); i++ {
betas = append(betas, pf.LagrangeInterpolation(bT[i]))
}
for i := 0; i < len(cT); i++ {
gammas = append(gammas, pf.LagrangeInterpolation(cT[i]))
}
//it used to range till len(alphas)-1, but this was wrong.
z := []*big.Int{big.NewInt(int64(1))}
for i := 1; i < len(a); i++ {
z = pf.Mul(
z,
[]*big.Int{
pf.F.Neg(
big.NewInt(int64(i))),
big.NewInt(int64(1)),
})
}
return alphas, betas, gammas, z
}
// CombinePolynomials combine the given polynomials arrays into one, also returns the P(x)
func (pf PolynomialField) CombinePolynomials(r []*big.Int, ap, bp, cp [][]*big.Int) ([]*big.Int, []*big.Int, []*big.Int, []*big.Int) {
var ax []*big.Int
for i := 0; i < len(r); i++ {
m := pf.Mul([]*big.Int{r[i]}, ap[i])
ax = pf.Add(ax, m)
}
var bx []*big.Int
for i := 0; i < len(r); i++ {
m := pf.Mul([]*big.Int{r[i]}, bp[i])
bx = pf.Add(bx, m)
}
var cx []*big.Int
for i := 0; i < len(r); i++ {
m := pf.Mul([]*big.Int{r[i]}, cp[i])
cx = pf.Add(cx, m)
}
px := pf.Sub(pf.Mul(ax, bx), cx)
return ax, bx, cx, px
}
// DivisorPolynomial returns the divisor polynomial given two polynomials
func (pf PolynomialField) DivisorPolynomial(px, z []*big.Int) []*big.Int {
quo, _ := pf.Div(px, z)
return quo
}