package r1csqap
|
|
|
|
import (
|
|
"bytes"
|
|
"math/big"
|
|
"testing"
|
|
|
|
"github.com/arnaucube/go-snark/fields"
|
|
"github.com/stretchr/testify/assert"
|
|
)
|
|
|
|
func TestTranspose(t *testing.T) {
|
|
b0 := big.NewInt(int64(0))
|
|
b1 := big.NewInt(int64(1))
|
|
bFive := big.NewInt(int64(5))
|
|
a := [][]*big.Int{
|
|
[]*big.Int{b0, b1, b0, b0, b0, b0},
|
|
[]*big.Int{b0, b0, b0, b1, b0, b0},
|
|
[]*big.Int{b0, b1, b0, b0, b1, b0},
|
|
[]*big.Int{bFive, b0, b0, b0, b0, b1},
|
|
}
|
|
aT := Transpose(a)
|
|
assert.Equal(t, aT, [][]*big.Int{
|
|
[]*big.Int{b0, b0, b0, bFive},
|
|
[]*big.Int{b1, b0, b1, b0},
|
|
[]*big.Int{b0, b0, b0, b0},
|
|
[]*big.Int{b0, b1, b0, b0},
|
|
[]*big.Int{b0, b0, b1, b0},
|
|
[]*big.Int{b0, b0, b0, b1},
|
|
})
|
|
}
|
|
|
|
func neg(a *big.Int) *big.Int {
|
|
return new(big.Int).Neg(a)
|
|
}
|
|
|
|
func TestPol(t *testing.T) {
|
|
b0 := big.NewInt(int64(0))
|
|
b1 := big.NewInt(int64(1))
|
|
b2 := big.NewInt(int64(2))
|
|
b3 := big.NewInt(int64(3))
|
|
b4 := big.NewInt(int64(4))
|
|
b5 := big.NewInt(int64(5))
|
|
b6 := big.NewInt(int64(6))
|
|
b16 := big.NewInt(int64(16))
|
|
|
|
a := []*big.Int{b1, b0, b5}
|
|
b := []*big.Int{b3, b0, b1}
|
|
|
|
// new Finite Field
|
|
r, ok := new(big.Int).SetString("21888242871839275222246405745257275088548364400416034343698204186575808495617", 10)
|
|
assert.True(nil, ok)
|
|
f := fields.NewFq(r)
|
|
|
|
// new Polynomial Field
|
|
pf := NewPolynomialField(f)
|
|
|
|
// polynomial multiplication
|
|
o := pf.Mul(a, b)
|
|
assert.Equal(t, o, []*big.Int{b3, b0, b16, b0, b5})
|
|
|
|
// polynomial division
|
|
quo, rem := pf.Div(a, b)
|
|
assert.Equal(t, quo[0].Int64(), int64(5))
|
|
assert.Equal(t, new(big.Int).Sub(rem[0], r).Int64(), int64(-14)) // check the rem result without modulo
|
|
|
|
c := []*big.Int{neg(b4), b0, neg(b2), b1}
|
|
d := []*big.Int{neg(b3), b1}
|
|
quo2, rem2 := pf.Div(c, d)
|
|
assert.Equal(t, quo2, []*big.Int{b3, b1, b1})
|
|
assert.Equal(t, rem2[0].Int64(), int64(5))
|
|
|
|
// polynomial addition
|
|
o = pf.Add(a, b)
|
|
assert.Equal(t, o, []*big.Int{b4, b0, b6})
|
|
|
|
// polynomial subtraction
|
|
o1 := pf.Sub(a, b)
|
|
o2 := pf.Sub(b, a)
|
|
o = pf.Add(o1, o2)
|
|
assert.True(t, bytes.Equal(b0.Bytes(), o[0].Bytes()))
|
|
assert.True(t, bytes.Equal(b0.Bytes(), o[1].Bytes()))
|
|
assert.True(t, bytes.Equal(b0.Bytes(), o[2].Bytes()))
|
|
|
|
c = []*big.Int{b5, b6, b1}
|
|
d = []*big.Int{b1, b3}
|
|
o = pf.Sub(c, d)
|
|
assert.Equal(t, o, []*big.Int{b4, b3, b1})
|
|
|
|
// NewPolZeroAt
|
|
o = pf.NewPolZeroAt(3, 4, b4)
|
|
assert.Equal(t, pf.Eval(o, big.NewInt(3)), b4)
|
|
o = pf.NewPolZeroAt(2, 4, b3)
|
|
assert.Equal(t, pf.Eval(o, big.NewInt(2)), b3)
|
|
}
|
|
|
|
func TestLagrangeInterpolation(t *testing.T) {
|
|
// new Finite Field
|
|
r, ok := new(big.Int).SetString("21888242871839275222246405745257275088548364400416034343698204186575808495617", 10)
|
|
assert.True(nil, ok)
|
|
f := fields.NewFq(r)
|
|
// new Polynomial Field
|
|
pf := NewPolynomialField(f)
|
|
|
|
b0 := big.NewInt(int64(0))
|
|
b5 := big.NewInt(int64(5))
|
|
a := []*big.Int{b0, b0, b0, b5}
|
|
alpha := pf.LagrangeInterpolation(a)
|
|
|
|
assert.Equal(t, pf.Eval(alpha, big.NewInt(int64(4))), b5)
|
|
aux := pf.Eval(alpha, big.NewInt(int64(3))).Int64()
|
|
assert.Equal(t, aux, int64(0))
|
|
|
|
}
|