package proof
|
|
|
|
import (
|
|
"bytes"
|
|
"math/big"
|
|
"strings"
|
|
"testing"
|
|
|
|
"github.com/stretchr/testify/assert"
|
|
|
|
"github.com/arnaucube/go-snark/circuit"
|
|
"github.com/arnaucube/go-snark/fields"
|
|
)
|
|
|
|
func TestZkFromFlatCircuitCode(t *testing.T) {
|
|
code := `
|
|
func exp3(private a):
|
|
b = a * a
|
|
c = a * b
|
|
return c
|
|
func sum(private a, private b):
|
|
c = a + b
|
|
return c
|
|
|
|
func main(private s0, public s1):
|
|
s3 = exp3(s0)
|
|
s4 = sum(s3, s0)
|
|
s5 = s4 + 5
|
|
equals(s1, s5)
|
|
out = 1 * 1
|
|
`
|
|
|
|
parser := circuit.NewParser(strings.NewReader(code))
|
|
cir, err := parser.Parse()
|
|
assert.Nil(t, err)
|
|
|
|
b3 := big.NewInt(int64(3))
|
|
privateInputs := []*big.Int{b3}
|
|
b35 := big.NewInt(int64(35))
|
|
publicSignals := []*big.Int{b35}
|
|
|
|
w, err := cir.CalculateWitness(privateInputs, publicSignals)
|
|
assert.Nil(t, err)
|
|
|
|
cir.GenerateR1CS()
|
|
|
|
alphas, betas, gammas, zxQAP := R1CSToQAP(
|
|
cir.R1CS.A,
|
|
cir.R1CS.B,
|
|
cir.R1CS.C,
|
|
)
|
|
assert.Equal(t, 8, len(alphas))
|
|
assert.Equal(t, 8, len(alphas))
|
|
assert.Equal(t, 8, len(alphas))
|
|
assert.Equal(t, 7, len(zxQAP))
|
|
assert.True(t, !bytes.Equal(alphas[1][1].Bytes(), big.NewInt(int64(0)).Bytes()))
|
|
|
|
ax, bx, cx, px := Utils.PF.CombinePolynomials(w, alphas, betas, gammas)
|
|
assert.Equal(t, 7, len(ax))
|
|
assert.Equal(t, 7, len(bx))
|
|
assert.Equal(t, 7, len(cx))
|
|
assert.Equal(t, 13, len(px))
|
|
|
|
hxQAP := Utils.PF.DivisorPolynomial(px, zxQAP)
|
|
assert.Equal(t, 7, len(hxQAP))
|
|
|
|
// hx==px/zx so px==hx*zx
|
|
assert.Equal(t, px, Utils.PF.Mul(hxQAP, zxQAP))
|
|
|
|
// p(x) = a(x) * b(x) - c(x) == h(x) * z(x)
|
|
abc := Utils.PF.Sub(Utils.PF.Mul(ax, bx), cx)
|
|
assert.Equal(t, abc, px)
|
|
hzQAP := Utils.PF.Mul(hxQAP, zxQAP)
|
|
assert.Equal(t, abc, hzQAP)
|
|
|
|
div, rem := Utils.PF.Div(px, zxQAP)
|
|
assert.Equal(t, hxQAP, div)
|
|
assert.Equal(t, rem, fields.ArrayOfBigZeros(6))
|
|
|
|
// calculate trusted setup
|
|
setup := &PinocchioSetup{}
|
|
err = setup.Init(cir, alphas, betas, gammas)
|
|
assert.Nil(t, err)
|
|
|
|
// zx and setup.Pk.Z should be the same
|
|
// currently not, the correct one is the calculation used inside GenerateTrustedSetup function
|
|
// the calculation is repeated. TODO avoid repeating calculation
|
|
assert.Equal(t, zxQAP, setup.Pk.Z)
|
|
|
|
hx := Utils.PF.DivisorPolynomial(px, setup.Pk.Z)
|
|
assert.Equal(t, hx, hxQAP)
|
|
div, rem = Utils.PF.Div(px, setup.Pk.Z)
|
|
assert.Equal(t, hx, div)
|
|
assert.Equal(t, rem, fields.ArrayOfBigZeros(6))
|
|
|
|
assert.Equal(t, px, Utils.PF.Mul(hxQAP, zxQAP))
|
|
// hx==px/zx so px==hx*zx
|
|
assert.Equal(t, px, Utils.PF.Mul(hx, setup.Pk.Z))
|
|
|
|
// check length of polynomials H(x) and Z(x)
|
|
assert.Equal(t, len(hx), len(px)-len(setup.Pk.Z)+1)
|
|
assert.Equal(t, len(hxQAP), len(px)-len(zxQAP)+1)
|
|
|
|
proof, err := setup.Generate(cir, w, px)
|
|
assert.Nil(t, err)
|
|
|
|
b35Verif := big.NewInt(int64(35))
|
|
publicSignalsVerif := []*big.Int{b35Verif}
|
|
{
|
|
r, err := setup.Verify(proof, publicSignalsVerif)
|
|
assert.Nil(t, err)
|
|
assert.True(t, r)
|
|
}
|
|
|
|
// check that with another public input the verification returns false
|
|
bOtherWrongPublic := big.NewInt(int64(34))
|
|
wrongPublicSignalsVerif := []*big.Int{bOtherWrongPublic}
|
|
{
|
|
r, err := setup.Verify(proof, wrongPublicSignalsVerif)
|
|
assert.Nil(t, err)
|
|
assert.False(t, r)
|
|
}
|
|
}
|
|
|
|
func TestZkMultiplication(t *testing.T) {
|
|
code := `
|
|
func main(private a, private b, public c):
|
|
d = a * b
|
|
equals(c, d)
|
|
out = 1 * 1
|
|
`
|
|
|
|
parser := circuit.NewParser(strings.NewReader(code))
|
|
cir, err := parser.Parse()
|
|
assert.Nil(t, err)
|
|
|
|
b3 := big.NewInt(int64(3))
|
|
b4 := big.NewInt(int64(4))
|
|
privateInputs := []*big.Int{b3, b4}
|
|
b12 := big.NewInt(int64(12))
|
|
publicSignals := []*big.Int{b12}
|
|
|
|
w, err := cir.CalculateWitness(privateInputs, publicSignals)
|
|
assert.Nil(t, err)
|
|
|
|
cir.GenerateR1CS()
|
|
|
|
// R1CS to QAP
|
|
// TODO zxQAP is not used and is an old impl.
|
|
// TODO remove
|
|
alphas, betas, gammas, zxQAP := R1CSToQAP(
|
|
cir.R1CS.A,
|
|
cir.R1CS.B,
|
|
cir.R1CS.C,
|
|
)
|
|
assert.Equal(t, 6, len(alphas))
|
|
assert.Equal(t, 6, len(betas))
|
|
assert.Equal(t, 6, len(betas))
|
|
assert.Equal(t, 5, len(zxQAP))
|
|
assert.True(t, !bytes.Equal(alphas[1][1].Bytes(), big.NewInt(int64(0)).Bytes()))
|
|
|
|
ax, bx, cx, px := Utils.PF.CombinePolynomials(w, alphas, betas, gammas)
|
|
assert.Equal(t, 4, len(ax))
|
|
assert.Equal(t, 4, len(bx))
|
|
assert.Equal(t, 4, len(cx))
|
|
assert.Equal(t, 7, len(px))
|
|
|
|
hxQAP := Utils.PF.DivisorPolynomial(px, zxQAP)
|
|
assert.Equal(t, 3, len(hxQAP))
|
|
|
|
// hx==px/zx so px==hx*zx
|
|
assert.Equal(t, px, Utils.PF.Mul(hxQAP, zxQAP))
|
|
|
|
// p(x) = a(x) * b(x) - c(x) == h(x) * z(x)
|
|
abc := Utils.PF.Sub(Utils.PF.Mul(ax, bx), cx)
|
|
assert.Equal(t, abc, px)
|
|
hzQAP := Utils.PF.Mul(hxQAP, zxQAP)
|
|
assert.Equal(t, abc, hzQAP)
|
|
|
|
div, rem := Utils.PF.Div(px, zxQAP)
|
|
assert.Equal(t, hxQAP, div)
|
|
assert.Equal(t, rem, fields.ArrayOfBigZeros(4))
|
|
|
|
setup := &PinocchioSetup{}
|
|
err = setup.Init(cir, alphas, betas, gammas)
|
|
assert.Nil(t, err)
|
|
|
|
// zx and setup.Pk.Z should be the same
|
|
// currently not, the correct one is the calculation used inside GenerateTrustedSetup function
|
|
// the calculation is repeated. TODO avoid repeating calculation
|
|
assert.Equal(t, zxQAP, setup.Pk.Z)
|
|
|
|
hx := Utils.PF.DivisorPolynomial(px, setup.Pk.Z)
|
|
assert.Equal(t, 3, len(hx))
|
|
assert.Equal(t, hx, hxQAP)
|
|
|
|
div, rem = Utils.PF.Div(px, setup.Pk.Z)
|
|
assert.Equal(t, hx, div)
|
|
assert.Equal(t, rem, fields.ArrayOfBigZeros(4))
|
|
|
|
assert.Equal(t, px, Utils.PF.Mul(hxQAP, zxQAP))
|
|
// hx==px/zx so px==hx*zx
|
|
assert.Equal(t, px, Utils.PF.Mul(hx, setup.Pk.Z))
|
|
|
|
// check length of polynomials H(x) and Z(x)
|
|
assert.Equal(t, len(hx), len(px)-len(setup.Pk.Z)+1)
|
|
assert.Equal(t, len(hxQAP), len(px)-len(zxQAP)+1)
|
|
|
|
proof, err := setup.Generate(cir, w, px)
|
|
assert.Nil(t, err)
|
|
|
|
b12Verif := big.NewInt(int64(12))
|
|
publicSignalsVerif := []*big.Int{b12Verif}
|
|
{
|
|
r, err := setup.Verify(proof, publicSignalsVerif)
|
|
assert.Nil(t, err)
|
|
assert.True(t, r)
|
|
}
|
|
|
|
// check that with another public input the verification returns false
|
|
bOtherWrongPublic := big.NewInt(int64(11))
|
|
wrongPublicSignalsVerif := []*big.Int{bOtherWrongPublic}
|
|
{
|
|
r, err := setup.Verify(proof, wrongPublicSignalsVerif)
|
|
assert.Nil(t, err)
|
|
assert.False(t, r)
|
|
}
|
|
}
|
|
|
|
func TestMinimalFlow(t *testing.T) {
|
|
code := `
|
|
func main(private s0, public s1):
|
|
s2 = s0 * s0
|
|
s3 = s2 * s0
|
|
s4 = s3 + s0
|
|
s5 = s4 + 5
|
|
equals(s1, s5)
|
|
out = 1 * 1
|
|
`
|
|
|
|
parser := circuit.NewParser(strings.NewReader(code))
|
|
cir, err := parser.Parse()
|
|
assert.Nil(t, err)
|
|
|
|
b3 := big.NewInt(int64(3))
|
|
privateInputs := []*big.Int{b3}
|
|
b35 := big.NewInt(int64(35))
|
|
publicSignals := []*big.Int{b35}
|
|
|
|
w, err := cir.CalculateWitness(privateInputs, publicSignals)
|
|
assert.Nil(t, err)
|
|
|
|
cir.GenerateR1CS()
|
|
|
|
// R1CS to QAP
|
|
// TODO zxQAP is not used and is an old impl, TODO remove
|
|
alphas, betas, gammas, _ := R1CSToQAP(
|
|
cir.R1CS.A,
|
|
cir.R1CS.B,
|
|
cir.R1CS.C,
|
|
)
|
|
assert.Equal(t, 8, len(alphas))
|
|
assert.Equal(t, 8, len(alphas))
|
|
assert.Equal(t, 8, len(alphas))
|
|
assert.True(t, !bytes.Equal(alphas[1][1].Bytes(), big.NewInt(int64(0)).Bytes()))
|
|
|
|
ax, bx, cx, px := Utils.PF.CombinePolynomials(w, alphas, betas, gammas)
|
|
assert.Equal(t, 7, len(ax))
|
|
assert.Equal(t, 7, len(bx))
|
|
assert.Equal(t, 7, len(cx))
|
|
assert.Equal(t, 13, len(px))
|
|
|
|
// calculate trusted setup
|
|
setup := &PinocchioSetup{}
|
|
err = setup.Init(cir, alphas, betas, gammas)
|
|
assert.Nil(t, err)
|
|
|
|
hx := Utils.PF.DivisorPolynomial(px, setup.Pk.Z)
|
|
div, rem := Utils.PF.Div(px, setup.Pk.Z)
|
|
assert.Equal(t, hx, div)
|
|
assert.Equal(t, rem, fields.ArrayOfBigZeros(6))
|
|
|
|
// hx==px/zx so px==hx*zx
|
|
assert.Equal(t, px, Utils.PF.Mul(hx, setup.Pk.Z))
|
|
|
|
// check length of polynomials H(x) and Z(x)
|
|
assert.Equal(t, len(hx), len(px)-len(setup.Pk.Z)+1)
|
|
|
|
proof, err := setup.Generate(cir, w, px)
|
|
assert.Nil(t, err)
|
|
|
|
b35Verif := big.NewInt(int64(35))
|
|
publicSignalsVerif := []*big.Int{b35Verif}
|
|
{
|
|
r, err := setup.Verify(proof, publicSignalsVerif)
|
|
assert.Nil(t, err)
|
|
assert.True(t, r)
|
|
}
|
|
|
|
// check that with another public input the verification returns false
|
|
bOtherWrongPublic := big.NewInt(int64(34))
|
|
wrongPublicSignalsVerif := []*big.Int{bOtherWrongPublic}
|
|
{
|
|
r, err := setup.Verify(proof, wrongPublicSignalsVerif)
|
|
assert.Nil(t, err)
|
|
assert.False(t, r)
|
|
}
|
|
}
|