package bn128
|
|
|
|
import (
|
|
"math/big"
|
|
|
|
"github.com/arnaucube/go-snark/fields"
|
|
)
|
|
|
|
type G1 struct {
|
|
F fields.Fq
|
|
G [3]*big.Int
|
|
}
|
|
|
|
func NewG1(f fields.Fq, g [2]*big.Int) G1 {
|
|
var g1 G1
|
|
g1.F = f
|
|
g1.G = [3]*big.Int{
|
|
g[0],
|
|
g[1],
|
|
g1.F.One(),
|
|
}
|
|
return g1
|
|
}
|
|
|
|
func (g1 G1) Zero() [2]*big.Int {
|
|
return [2]*big.Int{g1.F.Zero(), g1.F.Zero()}
|
|
}
|
|
func (g1 G1) IsZero(p [3]*big.Int) bool {
|
|
return g1.F.IsZero(p[2])
|
|
}
|
|
|
|
func (g1 G1) Add(p1, p2 [3]*big.Int) [3]*big.Int {
|
|
|
|
// https://en.wikibooks.org/wiki/Cryptography/Prime_Curve/Jacobian_Coordinates
|
|
// https://github.com/zcash/zcash/blob/master/src/snark/libsnark/algebra/curves/alt_bn128/alt_bn128_g1.cpp#L208
|
|
// http://hyperelliptic.org/EFD/g1p/auto-code/shortw/jacobian-0/addition/add-2007-bl.op3
|
|
|
|
if g1.IsZero(p1) {
|
|
return p2
|
|
}
|
|
if g1.IsZero(p2) {
|
|
return p1
|
|
}
|
|
|
|
x1 := p1[0]
|
|
y1 := p1[1]
|
|
z1 := p1[2]
|
|
x2 := p2[0]
|
|
y2 := p2[1]
|
|
z2 := p2[2]
|
|
|
|
z1z1 := g1.F.Square(z1)
|
|
z2z2 := g1.F.Square(z2)
|
|
|
|
u1 := g1.F.Mul(x1, z2z2)
|
|
u2 := g1.F.Mul(x2, z1z1)
|
|
|
|
t0 := g1.F.Mul(z2, z2z2)
|
|
s1 := g1.F.Mul(y1, t0)
|
|
|
|
t1 := g1.F.Mul(z1, z1z1)
|
|
s2 := g1.F.Mul(y2, t1)
|
|
|
|
h := g1.F.Sub(u2, u1)
|
|
t2 := g1.F.Add(h, h)
|
|
i := g1.F.Square(t2)
|
|
j := g1.F.Mul(h, i)
|
|
t3 := g1.F.Sub(s2, s1)
|
|
r := g1.F.Add(t3, t3)
|
|
v := g1.F.Mul(u1, i)
|
|
t4 := g1.F.Square(r)
|
|
t5 := g1.F.Add(v, v)
|
|
t6 := g1.F.Sub(t4, j)
|
|
x3 := g1.F.Sub(t6, t5)
|
|
t7 := g1.F.Sub(v, x3)
|
|
t8 := g1.F.Mul(s1, j)
|
|
t9 := g1.F.Add(t8, t8)
|
|
t10 := g1.F.Mul(r, t7)
|
|
|
|
y3 := g1.F.Sub(t10, t9)
|
|
|
|
t11 := g1.F.Add(z1, z2)
|
|
t12 := g1.F.Square(t11)
|
|
t13 := g1.F.Sub(t12, z1z1)
|
|
t14 := g1.F.Sub(t13, z2z2)
|
|
z3 := g1.F.Mul(t14, h)
|
|
|
|
return [3]*big.Int{x3, y3, z3}
|
|
}
|
|
|
|
func (g1 G1) Neg(p [3]*big.Int) [3]*big.Int {
|
|
return [3]*big.Int{
|
|
p[0],
|
|
g1.F.Neg(p[1]),
|
|
p[2],
|
|
}
|
|
}
|
|
func (g1 G1) Sub(a, b [3]*big.Int) [3]*big.Int {
|
|
return g1.Add(a, g1.Neg(b))
|
|
}
|
|
func (g1 G1) Double(p [3]*big.Int) [3]*big.Int {
|
|
|
|
// https://en.wikibooks.org/wiki/Cryptography/Prime_Curve/Jacobian_Coordinates
|
|
// http://hyperelliptic.org/EFD/g1p/auto-code/shortw/jacobian-0/doubling/dbl-2009-l.op3
|
|
// https://github.com/zcash/zcash/blob/master/src/snark/libsnark/algebra/curves/alt_bn128/alt_bn128_g1.cpp#L325
|
|
|
|
if g1.IsZero(p) {
|
|
return p
|
|
}
|
|
|
|
a := g1.F.Square(p[0])
|
|
b := g1.F.Square(p[1])
|
|
c := g1.F.Square(b)
|
|
|
|
t0 := g1.F.Add(p[0], b)
|
|
t1 := g1.F.Square(t0)
|
|
t2 := g1.F.Sub(t1, a)
|
|
t3 := g1.F.Sub(t2, c)
|
|
|
|
d := g1.F.Double(t3)
|
|
e := g1.F.Add(g1.F.Add(a, a), a)
|
|
f := g1.F.Square(e)
|
|
|
|
t4 := g1.F.Double(d)
|
|
x3 := g1.F.Sub(f, t4)
|
|
|
|
t5 := g1.F.Sub(d, x3)
|
|
twoC := g1.F.Add(c, c)
|
|
fourC := g1.F.Add(twoC, twoC)
|
|
t6 := g1.F.Add(fourC, fourC)
|
|
t7 := g1.F.Mul(e, t5)
|
|
y3 := g1.F.Sub(t7, t6)
|
|
|
|
t8 := g1.F.Mul(p[1], p[2])
|
|
z3 := g1.F.Double(t8)
|
|
|
|
return [3]*big.Int{x3, y3, z3}
|
|
}
|
|
|
|
func (g1 G1) MulScalar(p [3]*big.Int, e *big.Int) [3]*big.Int {
|
|
// https://en.wikipedia.org/wiki/Elliptic_curve_point_multiplication#Double-and-add
|
|
// for more possible implementations see g2.go file, at the function g2.MulScalar()
|
|
|
|
q := [3]*big.Int{g1.F.Zero(), g1.F.Zero(), g1.F.Zero()}
|
|
d := g1.F.Copy(e)
|
|
r := p
|
|
for i := d.BitLen() - 1; i >= 0; i-- {
|
|
q = g1.Double(q)
|
|
if d.Bit(i) == 1 {
|
|
q = g1.Add(q, r)
|
|
}
|
|
}
|
|
|
|
return q
|
|
}
|
|
|
|
func (g1 G1) Affine(p [3]*big.Int) [2]*big.Int {
|
|
if g1.IsZero(p) {
|
|
return g1.Zero()
|
|
}
|
|
|
|
zinv := g1.F.Inverse(p[2])
|
|
zinv2 := g1.F.Square(zinv)
|
|
x := g1.F.Mul(p[0], zinv2)
|
|
|
|
zinv3 := g1.F.Mul(zinv2, zinv)
|
|
y := g1.F.Mul(p[1], zinv3)
|
|
|
|
return [2]*big.Int{x, y}
|
|
}
|
|
|
|
func (g1 G1) Equal(p1, p2 [3]*big.Int) bool {
|
|
if g1.IsZero(p1) {
|
|
return g1.IsZero(p2)
|
|
}
|
|
if g1.IsZero(p2) {
|
|
return g1.IsZero(p1)
|
|
}
|
|
|
|
z1z1 := g1.F.Square(p1[2])
|
|
z2z2 := g1.F.Square(p2[2])
|
|
|
|
u1 := g1.F.Mul(p1[0], z2z2)
|
|
u2 := g1.F.Mul(p2[0], z1z1)
|
|
|
|
z1cub := g1.F.Mul(p1[2], z1z1)
|
|
z2cub := g1.F.Mul(p2[2], z2z2)
|
|
|
|
s1 := g1.F.Mul(p1[1], z2cub)
|
|
s2 := g1.F.Mul(p2[1], z1cub)
|
|
|
|
return g1.F.Equal(u1, u2) && g1.F.Equal(s1, s2)
|
|
}
|