package r1csqap
|
|
|
|
import (
|
|
"bytes"
|
|
"math/big"
|
|
"testing"
|
|
|
|
"github.com/arnaucube/go-snark/fields"
|
|
"github.com/stretchr/testify/assert"
|
|
)
|
|
|
|
func TestTranspose(t *testing.T) {
|
|
b0 := big.NewInt(int64(0))
|
|
b1 := big.NewInt(int64(1))
|
|
bFive := big.NewInt(int64(5))
|
|
a := [][]*big.Int{
|
|
[]*big.Int{b0, b1, b0, b0, b0, b0},
|
|
[]*big.Int{b0, b0, b0, b1, b0, b0},
|
|
[]*big.Int{b0, b1, b0, b0, b1, b0},
|
|
[]*big.Int{bFive, b0, b0, b0, b0, b1},
|
|
}
|
|
aT := Transpose(a)
|
|
assert.Equal(t, aT, [][]*big.Int{
|
|
[]*big.Int{b0, b0, b0, bFive},
|
|
[]*big.Int{b1, b0, b1, b0},
|
|
[]*big.Int{b0, b0, b0, b0},
|
|
[]*big.Int{b0, b1, b0, b0},
|
|
[]*big.Int{b0, b0, b1, b0},
|
|
[]*big.Int{b0, b0, b0, b1},
|
|
})
|
|
}
|
|
|
|
func neg(a *big.Int) *big.Int {
|
|
return new(big.Int).Neg(a)
|
|
}
|
|
|
|
func TestPol(t *testing.T) {
|
|
b0 := big.NewInt(int64(0))
|
|
b1 := big.NewInt(int64(1))
|
|
b2 := big.NewInt(int64(2))
|
|
b3 := big.NewInt(int64(3))
|
|
b4 := big.NewInt(int64(4))
|
|
b5 := big.NewInt(int64(5))
|
|
b6 := big.NewInt(int64(6))
|
|
b16 := big.NewInt(int64(16))
|
|
|
|
a := []*big.Int{b1, b0, b5}
|
|
b := []*big.Int{b3, b0, b1}
|
|
|
|
// new Finite Field
|
|
r, ok := new(big.Int).SetString("21888242871839275222246405745257275088548364400416034343698204186575808495617", 10)
|
|
assert.True(nil, ok)
|
|
f := fields.NewFq(r)
|
|
|
|
// new Polynomial Field
|
|
pf := NewPolynomialField(f)
|
|
|
|
// polynomial multiplication
|
|
o := pf.Mul(a, b)
|
|
assert.Equal(t, o, []*big.Int{b3, b0, b16, b0, b5})
|
|
|
|
// polynomial division
|
|
quo, rem := pf.Div(a, b)
|
|
assert.Equal(t, quo[0].Int64(), int64(5))
|
|
assert.Equal(t, new(big.Int).Sub(rem[0], r).Int64(), int64(-14)) // check the rem result without modulo
|
|
|
|
c := []*big.Int{neg(b4), b0, neg(b2), b1}
|
|
d := []*big.Int{neg(b3), b1}
|
|
quo2, rem2 := pf.Div(c, d)
|
|
assert.Equal(t, quo2, []*big.Int{b3, b1, b1})
|
|
assert.Equal(t, rem2[0].Int64(), int64(5))
|
|
|
|
// polynomial addition
|
|
o = pf.Add(a, b)
|
|
assert.Equal(t, o, []*big.Int{b4, b0, b6})
|
|
|
|
// polynomial subtraction
|
|
o1 := pf.Sub(a, b)
|
|
o2 := pf.Sub(b, a)
|
|
o = pf.Add(o1, o2)
|
|
assert.True(t, bytes.Equal(b0.Bytes(), o[0].Bytes()))
|
|
assert.True(t, bytes.Equal(b0.Bytes(), o[1].Bytes()))
|
|
assert.True(t, bytes.Equal(b0.Bytes(), o[2].Bytes()))
|
|
|
|
c = []*big.Int{b5, b6, b1}
|
|
d = []*big.Int{b1, b3}
|
|
o = pf.Sub(c, d)
|
|
assert.Equal(t, o, []*big.Int{b4, b3, b1})
|
|
|
|
// NewPolZeroAt
|
|
o = pf.NewPolZeroAt(3, 4, b4)
|
|
assert.Equal(t, pf.Eval(o, big.NewInt(3)), b4)
|
|
o = pf.NewPolZeroAt(2, 4, b3)
|
|
assert.Equal(t, pf.Eval(o, big.NewInt(2)), b3)
|
|
}
|
|
|
|
func TestLagrangeInterpolation(t *testing.T) {
|
|
// new Finite Field
|
|
r, ok := new(big.Int).SetString("21888242871839275222246405745257275088548364400416034343698204186575808495617", 10)
|
|
assert.True(nil, ok)
|
|
f := fields.NewFq(r)
|
|
// new Polynomial Field
|
|
pf := NewPolynomialField(f)
|
|
|
|
b0 := big.NewInt(int64(0))
|
|
b5 := big.NewInt(int64(5))
|
|
a := []*big.Int{b0, b0, b0, b5}
|
|
alpha := pf.LagrangeInterpolation(a)
|
|
|
|
assert.Equal(t, pf.Eval(alpha, big.NewInt(int64(4))), b5)
|
|
aux := pf.Eval(alpha, big.NewInt(int64(3))).Int64()
|
|
assert.Equal(t, aux, int64(0))
|
|
|
|
}
|
|
|
|
func TestR1CSToQAP(t *testing.T) {
|
|
// new Finite Field
|
|
r, ok := new(big.Int).SetString("21888242871839275222246405745257275088548364400416034343698204186575808495617", 10)
|
|
assert.True(nil, ok)
|
|
f := fields.NewFq(r)
|
|
// new Polynomial Field
|
|
pf := NewPolynomialField(f)
|
|
|
|
b0 := big.NewInt(int64(0))
|
|
b1 := big.NewInt(int64(1))
|
|
b3 := big.NewInt(int64(3))
|
|
b5 := big.NewInt(int64(5))
|
|
b9 := big.NewInt(int64(9))
|
|
b27 := big.NewInt(int64(27))
|
|
b30 := big.NewInt(int64(30))
|
|
b35 := big.NewInt(int64(35))
|
|
a := [][]*big.Int{
|
|
[]*big.Int{b0, b1, b0, b0, b0, b0},
|
|
[]*big.Int{b0, b0, b0, b1, b0, b0},
|
|
[]*big.Int{b0, b1, b0, b0, b1, b0},
|
|
[]*big.Int{b5, b0, b0, b0, b0, b1},
|
|
}
|
|
b := [][]*big.Int{
|
|
[]*big.Int{b0, b1, b0, b0, b0, b0},
|
|
[]*big.Int{b0, b1, b0, b0, b0, b0},
|
|
[]*big.Int{b1, b0, b0, b0, b0, b0},
|
|
[]*big.Int{b1, b0, b0, b0, b0, b0},
|
|
}
|
|
c := [][]*big.Int{
|
|
[]*big.Int{b0, b0, b0, b1, b0, b0},
|
|
[]*big.Int{b0, b0, b0, b0, b1, b0},
|
|
[]*big.Int{b0, b0, b0, b0, b0, b1},
|
|
[]*big.Int{b0, b0, b1, b0, b0, b0},
|
|
}
|
|
alphas, betas, gammas, zx := pf.R1CSToQAP(a, b, c)
|
|
// fmt.Println(alphas)
|
|
// fmt.Println(betas)
|
|
// fmt.Println(gammas)
|
|
// fmt.Print("Z(x): ")
|
|
// fmt.Println(zx)
|
|
|
|
w := []*big.Int{b1, b3, b35, b9, b27, b30}
|
|
ax, bx, cx, px := pf.CombinePolynomials(w, alphas, betas, gammas)
|
|
// fmt.Println(ax)
|
|
// fmt.Println(bx)
|
|
// fmt.Println(cx)
|
|
// fmt.Println(px)
|
|
|
|
hx := pf.DivisorPolynomial(px, zx)
|
|
// fmt.Println(hx)
|
|
|
|
// hx==px/zx so px==hx*zx
|
|
assert.Equal(t, px, pf.Mul(hx, zx))
|
|
|
|
// p(x) = a(x) * b(x) - c(x) == h(x) * z(x)
|
|
abc := pf.Sub(pf.Mul(ax, bx), cx)
|
|
assert.Equal(t, abc, px)
|
|
hz := pf.Mul(hx, zx)
|
|
assert.Equal(t, abc, hz)
|
|
|
|
}
|