You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 

307 lines
8.2 KiB

package snark
import (
"crypto/rand"
"fmt"
"math/big"
"github.com/arnaucube/go-snark/bn128"
"github.com/arnaucube/go-snark/fields"
"github.com/arnaucube/go-snark/r1csqap"
)
type Setup struct {
Toxic struct {
T *big.Int // trusted setup secret
Ka *big.Int // prover
Kb *big.Int // prover
Kc *big.Int // prover
Kbeta *big.Int
Kgamma *big.Int
RhoA *big.Int
RhoB *big.Int
RhoC *big.Int
}
// public
G1T [][3]*big.Int // t encrypted in G1 curve
G2T [][3][2]*big.Int // t encrypted in G2 curve
Pk struct { // Proving Key pk:=(pkA, pkB, pkC, pkH)
A [][3]*big.Int
B [][3][2]*big.Int
C [][3]*big.Int
Kp [][3]*big.Int
Ap [][3]*big.Int
Bp [][3]*big.Int
Cp [][3]*big.Int
}
Vk struct {
A [3][2]*big.Int
B [3]*big.Int
C [3][2]*big.Int
G1Kbg [3]*big.Int // g1 * Kbeta * Kgamma
G2Kbg [3][2]*big.Int // g2 * Kbeta * Kgamma
G2Kg [3][2]*big.Int // g2 * Kgamma
Vkz [3][2]*big.Int
}
}
type Proof struct {
PiA [3]*big.Int
PiAp [3]*big.Int
PiB [3][2]*big.Int
PiBp [3]*big.Int
PiC [3]*big.Int
PiCp [3]*big.Int
PiH [3]*big.Int
PiKp [3]*big.Int
}
const bits = 512
func GenerateTrustedSetup(bn bn128.Bn128, pf r1csqap.PolynomialField, witnessLength int, alphas, betas, gammas [][]*big.Int, ax, bx, cx, hx, zx []*big.Int) (Setup, error) {
var setup Setup
var err error
// generate random t value
setup.Toxic.T, err = rand.Prime(rand.Reader, bits)
if err != nil {
return Setup{}, err
}
// k for calculating pi' and Vk
setup.Toxic.Ka, err = rand.Prime(rand.Reader, bits)
if err != nil {
return Setup{}, err
}
setup.Toxic.Kb, err = rand.Prime(rand.Reader, bits)
if err != nil {
return Setup{}, err
}
setup.Toxic.Kc, err = rand.Prime(rand.Reader, bits)
if err != nil {
return Setup{}, err
}
// generate Kβ (Kbeta) and Kγ (Kgamma)
setup.Toxic.Kbeta, err = rand.Prime(rand.Reader, bits)
if err != nil {
return Setup{}, err
}
setup.Toxic.Kgamma, err = rand.Prime(rand.Reader, bits)
if err != nil {
return Setup{}, err
}
// generate ρ (Rho): ρA, ρB, ρC
setup.Toxic.RhoA, err = rand.Prime(rand.Reader, bits)
if err != nil {
return Setup{}, err
}
setup.Toxic.RhoB, err = rand.Prime(rand.Reader, bits)
if err != nil {
return Setup{}, err
}
setup.Toxic.RhoC = bn.Fq1.Mul(setup.Toxic.RhoA, setup.Toxic.RhoB)
// encrypt t values with curve generators
var gt1 [][3]*big.Int
var gt2 [][3][2]*big.Int
for i := 0; i < witnessLength; i++ {
tPow := bn.Fq1.Exp(setup.Toxic.T, big.NewInt(int64(i)))
tEncr1 := bn.G1.MulScalar(bn.G1.G, tPow)
gt1 = append(gt1, tEncr1)
tEncr2 := bn.G2.MulScalar(bn.G2.G, tPow)
gt2 = append(gt2, tEncr2)
}
// gt1: g1, g1*t, g1*t^2, g1*t^3, ...
// gt2: g2, g2*t, g2*t^2, ...
setup.G1T = gt1
setup.G2T = gt2
setup.Vk.A = bn.G2.MulScalar(bn.G2.G, setup.Toxic.Ka)
setup.Vk.B = bn.G1.MulScalar(bn.G1.G, setup.Toxic.Kb)
setup.Vk.C = bn.G2.MulScalar(bn.G2.G, setup.Toxic.Kc)
/*
Verification keys:
- Vk_betagamma1: setup.G1Kbg = g1 * Kbeta*Kgamma
- Vk_betagamma2: setup.G2Kbg = g2 * Kbeta*Kgamma
- Vk_gamma: setup.G2Kg = g2 * Kgamma
*/
kbg := bn.Fq1.Mul(setup.Toxic.Kbeta, setup.Toxic.Kgamma)
setup.Vk.G1Kbg = bn.G1.MulScalar(bn.G1.G, kbg)
setup.Vk.G2Kbg = bn.G2.MulScalar(bn.G2.G, kbg)
setup.Vk.G2Kg = bn.G2.MulScalar(bn.G2.G, setup.Toxic.Kgamma)
for i := 0; i < witnessLength; i++ {
// A[i] = g1 * ax[t]
at := pf.Eval(alphas[i], setup.Toxic.T)
a := bn.G1.MulScalar(bn.G1.G, at)
setup.Pk.A = append(setup.Pk.A, a)
bt := pf.Eval(betas[i], setup.Toxic.T)
bg1 := bn.G1.MulScalar(bn.G1.G, bt)
bg2 := bn.G2.MulScalar(bn.G2.G, bt)
setup.Pk.B = append(setup.Pk.B, bg2)
ct := pf.Eval(gammas[i], setup.Toxic.T)
c := bn.G1.MulScalar(bn.G1.G, ct)
setup.Pk.C = append(setup.Pk.C, c)
kt := bn.Fq1.Add(bn.Fq1.Add(at, bt), ct)
k := bn.G1.MulScalar(bn.G1.G, kt)
setup.Pk.Ap = append(setup.Pk.Ap, bn.G1.MulScalar(a, setup.Toxic.Ka))
setup.Pk.Bp = append(setup.Pk.Bp, bn.G1.MulScalar(bg1, setup.Toxic.Kb))
setup.Pk.Cp = append(setup.Pk.Cp, bn.G1.MulScalar(c, setup.Toxic.Kc))
setup.Pk.Kp = append(setup.Pk.Kp, bn.G1.MulScalar(k, setup.Toxic.Kbeta))
}
setup.Vk.Vkz = bn.G2.MulScalar(bn.G2.G, pf.Eval(zx, setup.Toxic.T))
return setup, nil
}
func GenerateProofs(bn bn128.Bn128, f fields.Fq, setup Setup, hx []*big.Int, w []*big.Int) (Proof, error) {
var proof Proof
proof.PiA = [3]*big.Int{bn.G1.F.Zero(), bn.G1.F.Zero(), bn.G1.F.Zero()}
proof.PiAp = [3]*big.Int{bn.G1.F.Zero(), bn.G1.F.Zero(), bn.G1.F.Zero()}
proof.PiB = bn.Fq6.Zero()
proof.PiBp = [3]*big.Int{bn.G1.F.Zero(), bn.G1.F.Zero(), bn.G1.F.Zero()}
proof.PiC = [3]*big.Int{bn.G1.F.Zero(), bn.G1.F.Zero(), bn.G1.F.Zero()}
proof.PiCp = [3]*big.Int{bn.G1.F.Zero(), bn.G1.F.Zero(), bn.G1.F.Zero()}
proof.PiH = [3]*big.Int{bn.G1.F.Zero(), bn.G1.F.Zero(), bn.G1.F.Zero()}
proof.PiKp = [3]*big.Int{bn.G1.F.Zero(), bn.G1.F.Zero(), bn.G1.F.Zero()}
for i := 0; i < len(w); i++ {
proof.PiA = bn.G1.Add(proof.PiA, bn.G1.MulScalar(setup.Pk.A[i], w[i]))
proof.PiAp = bn.G1.Add(proof.PiAp, bn.G1.MulScalar(setup.Pk.Ap[i], w[i]))
}
for i := 0; i < len(w); i++ {
proof.PiB = bn.G2.Add(proof.PiB, bn.G2.MulScalar(setup.Pk.B[i], w[i]))
proof.PiBp = bn.G1.Add(proof.PiBp, bn.G1.MulScalar(setup.Pk.Bp[i], w[i]))
proof.PiC = bn.G1.Add(proof.PiC, bn.G1.MulScalar(setup.Pk.C[i], w[i]))
proof.PiCp = bn.G1.Add(proof.PiCp, bn.G1.MulScalar(setup.Pk.Cp[i], w[i]))
proof.PiKp = bn.G1.Add(proof.PiKp, bn.G1.MulScalar(setup.Pk.Kp[i], w[i]))
}
for i := 0; i < len(hx); i++ {
proof.PiH = bn.G1.Add(proof.PiH, bn.G1.MulScalar(setup.G1T[i], hx[i]))
}
return proof, nil
}
func VerifyProof(bn bn128.Bn128, setup Setup, proof Proof) bool {
// e(piA, Va) == e(piA', g2)
pairingPiaVa, err := bn.Pairing(proof.PiA, setup.Vk.A)
if err != nil {
return false
}
pairingPiapG2, err := bn.Pairing(proof.PiAp, bn.G2.G)
if err != nil {
return false
}
if !bn.Fq12.Equal(pairingPiaVa, pairingPiapG2) {
return false
} else {
fmt.Println("valid knowledge commitment for A")
}
// e(Vb, piB) == e(piB', g2)
pairingVbPib, err := bn.Pairing(setup.Vk.B, proof.PiB)
if err != nil {
return false
}
pairingPibpG2, err := bn.Pairing(proof.PiBp, bn.G2.G)
if err != nil {
return false
}
if !bn.Fq12.Equal(pairingVbPib, pairingPibpG2) {
return false
} else {
fmt.Println("valid knowledge commitment for B")
}
// e(piC, Vc) == e(piC', g2)
pairingPicVc, err := bn.Pairing(proof.PiC, setup.Vk.C)
if err != nil {
return false
}
pairingPicpG2, err := bn.Pairing(proof.PiCp, bn.G2.G)
if err != nil {
return false
}
if !bn.Fq12.Equal(pairingPicVc, pairingPicpG2) {
return false
} else {
fmt.Println("valid knowledge commitment for C")
}
// Vkx, to then calculate Vkx+piA
// e(Vkx+piA, piB) == e(piH, Vkz) * e(piC, g2)
pairingPiaPib, err := bn.Pairing(proof.PiA, proof.PiB)
if err != nil {
return false
}
pairingPihVkz, err := bn.Pairing(proof.PiH, setup.Vk.Vkz)
if err != nil {
return false
}
pairingPicG2, err := bn.Pairing(proof.PiC, bn.G2.G)
if err != nil {
return false
}
pairingR := bn.Fq12.Mul(pairingPihVkz, pairingPicG2)
if !bn.Fq12.Equal(pairingPiaPib, pairingR) {
fmt.Println("p4")
return false
} else {
fmt.Println("QAP disibility checked")
}
// e(piA+piC, g2KbetaKgamma) * e(g1KbetaKgamma, piB)
// == e(piK, g2Kgamma)
// piApiC := bn.G1.Add(proof.PiA, proof.PiC)
// pairingPiACG2Kbg, err := bn.Pairing(piApiC, setup.Vk.G2Kbg)
// if err != nil {
// return false
// }
// pairingG1KbgPiB, err := bn.Pairing(setup.Vk.G1Kbg, proof.PiB)
// if err != nil {
// return false
// }
// pairingL := bn.Fq12.Mul(pairingPiACG2Kbg, pairingG1KbgPiB)
// pairingR, err := bn.Pairing(proof.PiKp, setup.Vk.G2Kg)
// if err != nil {
// return false
// }
// if !bn.Fq12.Equal(pairingL, pairingR) {
// fmt.Println("p5")
// return false
// }
//
// e(piA, piB) == e(piH, Vz) * e(piC, g2)
// pairingPiaPib, err := bn.Pairing(proof.PiA, proof.PiB)
// if err != nil {
// return false
// }
// pairingPihVz, err := bn.Pairing(proof.PiH, setup.Vk.Vkz)
// if err != nil {
// return false
// }
// pairingPicG2, err := bn.Pairing(proof.PiC, bn.G2.G)
// if err != nil {
// return false
// }
// if !bn.Fq12.Equal(pairingPiaPib, bn.Fq12.Mul(pairingPihVz, pairingPicG2)) {
// return false
// }
return true
}