package groth16
|
|
|
|
import (
|
|
"bytes"
|
|
"fmt"
|
|
"math/big"
|
|
"strings"
|
|
"testing"
|
|
"time"
|
|
|
|
"github.com/arnaucube/go-snark/circuitcompiler"
|
|
"github.com/arnaucube/go-snark/r1csqap"
|
|
"github.com/stretchr/testify/assert"
|
|
)
|
|
|
|
func TestGroth16MinimalFlow(t *testing.T) {
|
|
fmt.Println("testing Groth16 minimal flow")
|
|
// circuit function
|
|
// y = x^3 + x + 5
|
|
code := `
|
|
func main(private s0, public s1):
|
|
s2 = s0 * s0
|
|
s3 = s2 * s0
|
|
s4 = s3 + s0
|
|
s5 = s4 + 5
|
|
equals(s1, s5)
|
|
out = 1 * 1
|
|
`
|
|
fmt.Print("\ncode of the circuit:")
|
|
|
|
// parse the code
|
|
parser := circuitcompiler.NewParser(strings.NewReader(code))
|
|
circuit, err := parser.Parse()
|
|
assert.Nil(t, err)
|
|
|
|
b3 := big.NewInt(int64(3))
|
|
privateInputs := []*big.Int{b3}
|
|
b35 := big.NewInt(int64(35))
|
|
publicSignals := []*big.Int{b35}
|
|
|
|
// wittness
|
|
w, err := circuit.CalculateWitness(privateInputs, publicSignals)
|
|
assert.Nil(t, err)
|
|
|
|
// code to R1CS
|
|
fmt.Println("\ngenerating R1CS from code")
|
|
a, b, c := circuit.GenerateR1CS()
|
|
fmt.Println("\nR1CS:")
|
|
fmt.Println("a:", a)
|
|
fmt.Println("b:", b)
|
|
fmt.Println("c:", c)
|
|
|
|
// R1CS to QAP
|
|
// TODO zxQAP is not used and is an old impl, TODO remove
|
|
alphas, betas, gammas, _ := Utils.PF.R1CSToQAP(a, b, c)
|
|
fmt.Println("qap")
|
|
assert.Equal(t, 8, len(alphas))
|
|
assert.Equal(t, 8, len(alphas))
|
|
assert.Equal(t, 8, len(alphas))
|
|
assert.True(t, !bytes.Equal(alphas[1][1].Bytes(), big.NewInt(int64(0)).Bytes()))
|
|
|
|
ax, bx, cx, px := Utils.PF.CombinePolynomials(w, alphas, betas, gammas)
|
|
assert.Equal(t, 7, len(ax))
|
|
assert.Equal(t, 7, len(bx))
|
|
assert.Equal(t, 7, len(cx))
|
|
assert.Equal(t, 13, len(px))
|
|
|
|
// ---
|
|
// from here is the GROTH16
|
|
// ---
|
|
// calculate trusted setup
|
|
fmt.Println("groth")
|
|
setup, err := GenerateTrustedSetup(len(w), *circuit, alphas, betas, gammas)
|
|
assert.Nil(t, err)
|
|
fmt.Println("\nt:", setup.Toxic.T)
|
|
|
|
hx := Utils.PF.DivisorPolynomial(px, setup.Pk.Z)
|
|
div, rem := Utils.PF.Div(px, setup.Pk.Z)
|
|
assert.Equal(t, hx, div)
|
|
assert.Equal(t, rem, r1csqap.ArrayOfBigZeros(6))
|
|
|
|
// hx==px/zx so px==hx*zx
|
|
assert.Equal(t, px, Utils.PF.Mul(hx, setup.Pk.Z))
|
|
|
|
// check length of polynomials H(x) and Z(x)
|
|
assert.Equal(t, len(hx), len(px)-len(setup.Pk.Z)+1)
|
|
|
|
proof, err := GenerateProofs(*circuit, setup, w, px)
|
|
assert.Nil(t, err)
|
|
|
|
// fmt.Println("\n proofs:")
|
|
// fmt.Println(proof)
|
|
|
|
// fmt.Println("public signals:", proof.PublicSignals)
|
|
fmt.Println("\nsignals:", circuit.Signals)
|
|
fmt.Println("witness:", w)
|
|
b35Verif := big.NewInt(int64(35))
|
|
publicSignalsVerif := []*big.Int{b35Verif}
|
|
before := time.Now()
|
|
assert.True(t, VerifyProof(*circuit, setup, proof, publicSignalsVerif, true))
|
|
fmt.Println("verify proof time elapsed:", time.Since(before))
|
|
|
|
// check that with another public input the verification returns false
|
|
bOtherWrongPublic := big.NewInt(int64(34))
|
|
wrongPublicSignalsVerif := []*big.Int{bOtherWrongPublic}
|
|
assert.True(t, !VerifyProof(*circuit, setup, proof, wrongPublicSignalsVerif, false))
|
|
}
|