|
|
package circuitcompiler
import ( "crypto/sha256" "fmt" "github.com/arnaucube/go-snark/bn128" "github.com/arnaucube/go-snark/fields" "github.com/arnaucube/go-snark/r1csqap" "math/big" "sync" )
type utils struct { Bn bn128.Bn128 FqR fields.Fq PF r1csqap.PolynomialField }
type R1CS struct { A [][]*big.Int B [][]*big.Int C [][]*big.Int } type Program struct { functions map[string]*Circuit globalInputs []string globalOutput map[string]bool arithmeticEnvironment utils //find a better name
//key 1: the hash chain indicating from where the variable is called H( H(main(a,b)) , doSomething(x,z) ), where H is a hash function.
//value 1 : map
// with key variable name
// with value variable name + hash Chain
//this datastructure is nice but maybe ill replace it later with something less confusing
//it serves the elementary purpose of not computing a variable a second time.
//it boosts parse time
computedInContext map[string]map[string]string
//to reduce the number of multiplication gates, we store each factor signature, and the variable name,
//so each time a variable is computed, that happens to have the very same factors, we reuse the former
//it boost setup and proof time
computedFactors map[string]string }
//returns the cardinality of all main inputs + 1 for the "one" signal
func (p *Program) GlobalInputCount() int { return len(p.globalInputs) }
//returns the cardinaltiy of the output signals. Current only 1 output possible
func (p *Program) GlobalOutputCount() int { return len(p.globalOutput) }
func (p *Program) PrintContraintTrees() { for k, v := range p.functions { fmt.Println(k) PrintTree(v.root) } }
func (p *Program) BuildConstraintTrees() {
mainRoot := p.getMainCircuit().root
//if our programs last operation is not a multiplication gate, we need to introduce on
if mainRoot.value.Op&(MINUS|PLUS) != 0 { newOut := Constraint{Out: "out", V1: "1", V2: "out2", Op: MULTIPLY} p.getMainCircuit().addConstraint(&newOut) mainRoot.value.Out = "main@out2" p.getMainCircuit().gateMap[mainRoot.value.Out] = mainRoot }
for _, in := range p.getMainCircuit().Inputs { p.globalInputs = append(p.globalInputs, in) }
var wg = sync.WaitGroup{}
//we build the parse trees concurrently! because we can! go rocks
for _, circuit := range p.functions { wg.Add(1) //interesting: if circuit is not passed as argument, the program fails. duno why..
go func(c *Circuit) { c.buildTree(c.root) wg.Done() }(circuit)
} wg.Wait() return
}
func (c *Circuit) buildTree(g *gate) { if _, ex := c.gateMap[g.value.Out]; ex { if g.OperationType()&(IN|CONST) != 0 { return } } else { panic(fmt.Sprintf("undefined variable %s", g.value.Out)) } if g.OperationType() == FUNC {
for _, in := range g.value.Inputs { if gate, ex := c.gateMap[in]; ex { g.funcInputs = append(g.funcInputs, gate) c.buildTree(gate) } else { panic(fmt.Sprintf("undefined argument %s", g.value.V1)) } } return } if constr, ex := c.gateMap[g.value.V1]; ex { g.left = constr c.buildTree(g.left) } else { panic(fmt.Sprintf("undefined value %s", g.value.V1)) }
if constr, ex := c.gateMap[g.value.V2]; ex { g.right = constr c.buildTree(g.right) } else { panic(fmt.Sprintf("undefined value %s", g.value.V2)) } }
func (p *Program) ReduceCombinedTree() (orderedmGates []gate) { orderedmGates = []gate{} p.computedInContext = make(map[string]map[string]string) p.computedFactors = make(map[string]string) rootHash := []byte{} p.computedInContext[string(rootHash)] = make(map[string]string) p.r1CSRecursiveBuild(p.getMainCircuit(), p.getMainCircuit().root, rootHash, &orderedmGates, false, false) return orderedmGates }
//recursively walks through the parse tree to create a list of all
//multiplication gates needed for the QAP construction
//Takes into account, that multiplication with constants and addition (= substraction) can be reduced, and does so
func (p *Program) r1CSRecursiveBuild(currentCircuit *Circuit, node *gate, hashTraceBuildup []byte, orderedmGates *[]gate, negate bool, invert bool) (facs []factor, hashTraceResult []byte, variableEnd bool) {
if node.OperationType() == CONST { b1, v1 := isValue(node.value.Out) if !b1 { panic("not a constant") } mul := [2]int{v1, 1} if invert { mul = [2]int{1, v1}
} return []factor{{typ: CONST, negate: negate, multiplicative: mul}}, make([]byte, 10), false }
if node.OperationType() == FUNC { nextContext := p.extendedFunctionRenamer(currentCircuit, node.value) currentCircuit = nextContext node = nextContext.root hashTraceBuildup = hashTogether(hashTraceBuildup, []byte(currentCircuit.currentOutputName())) if _, ex := p.computedInContext[string(hashTraceBuildup)]; !ex { p.computedInContext[string(hashTraceBuildup)] = make(map[string]string) }
}
if node.OperationType() == IN { fac := factor{typ: IN, name: node.value.Out, invert: invert, negate: negate, multiplicative: [2]int{1, 1}} hashTraceBuildup = hashTogether(hashTraceBuildup, []byte(node.value.Out)) return []factor{fac}, hashTraceBuildup, true }
if out, ex := p.computedInContext[string(hashTraceBuildup)][node.value.Out]; ex { fac := factor{typ: IN, name: out, invert: invert, negate: negate, multiplicative: [2]int{1, 1}} hashTraceBuildup = hashTogether(hashTraceBuildup, []byte(node.value.Out)) return []factor{fac}, hashTraceBuildup, true }
leftFactors, leftHash, variableEnd := p.r1CSRecursiveBuild(currentCircuit, node.left, hashTraceBuildup, orderedmGates, negate, invert)
rightFactors, rightHash, cons := p.r1CSRecursiveBuild(currentCircuit, node.right, hashTraceBuildup, orderedmGates, Xor(negate, node.value.negate), Xor(invert, node.value.invert))
if node.OperationType() == MULTIPLY {
if !(variableEnd && cons) && !node.value.invert && node != p.getMainCircuit().root { //if !(variableEnd && cons) && !node.value.invert && node != p.getMainCircuit().root {
return mulFactors(leftFactors, rightFactors), append(leftHash, rightHash...), variableEnd || cons } sig := factorsSignature(leftFactors, rightFactors) if out, ex := p.computedFactors[sig]; ex { return []factor{{typ: IN, name: out, invert: invert, negate: negate, multiplicative: [2]int{1, 1}}}, hashTraceBuildup, true
}
rootGate := cloneGate(node) rootGate.index = len(*orderedmGates) rootGate.leftIns = leftFactors rootGate.rightIns = rightFactors out := hashTogether(leftHash, rightHash) rootGate.value.V1 = rootGate.value.V1 + string(leftHash[:10]) rootGate.value.V2 = rootGate.value.V2 + string(rightHash[:10])
//note we only check for existence, but not for truth.
//global outputs do not require a hash identifier, since they are unique
if _, ex := p.globalOutput[rootGate.value.Out]; !ex { rootGate.value.Out = rootGate.value.Out + string(out[:10]) }
p.computedInContext[string(hashTraceBuildup)][node.value.Out] = rootGate.value.Out
p.computedFactors[sig] = rootGate.value.Out *orderedmGates = append(*orderedmGates, *rootGate)
hashTraceBuildup = hashTogether(hashTraceBuildup, []byte(rootGate.value.Out))
return []factor{{typ: IN, name: rootGate.value.Out, invert: invert, negate: negate, multiplicative: [2]int{1, 1}}}, hashTraceBuildup, true }
switch node.OperationType() { case PLUS: return addFactors(leftFactors, rightFactors), hashTogether(leftHash, rightHash), variableEnd || cons default: panic("unexpected gate") }
}
type factor struct { typ Token name string invert, negate bool multiplicative [2]int }
func (f factor) String() string { if f.typ == CONST { return fmt.Sprintf("(const fac: %v)", f.multiplicative) } str := f.name if f.invert { str += "^-1" } if f.negate { str = "-" + str } return fmt.Sprintf("(\"%s\" fac: %v)", str, f.multiplicative) }
func mul2DVector(a, b [2]int) [2]int { return [2]int{a[0] * b[0], a[1] * b[1]} }
func factorsSignature(leftFactors, rightFactors []factor) string { hasher.Reset() //using a commutative operation here would be better. since a * b = b * a, but H(a,b) != H(b,a)
//could use (g^a)^b == (g^b)^a where g is a generator of some prime field where the dicrete log is known to be hard
for _, facLeft := range leftFactors { hasher.Write([]byte(facLeft.String())) } for _, Righ := range rightFactors { hasher.Write([]byte(Righ.String())) } return string(hasher.Sum(nil))[:16] }
//multiplies factor elements and returns the result
//in case the factors do not hold any constants and all inputs are distinct, the output will be the concatenation of left+right
func mulFactors(leftFactors, rightFactors []factor) (result []factor) {
for _, facLeft := range leftFactors {
for i, facRight := range rightFactors { if facLeft.typ == CONST && facRight.typ == IN { rightFactors[i] = factor{typ: IN, name: facRight.name, negate: Xor(facLeft.negate, facRight.negate), invert: facRight.invert, multiplicative: mul2DVector(facRight.multiplicative, facLeft.multiplicative)} continue } if facRight.typ == CONST && facLeft.typ == IN { rightFactors[i] = factor{typ: IN, name: facLeft.name, negate: Xor(facLeft.negate, facRight.negate), invert: facLeft.invert, multiplicative: mul2DVector(facRight.multiplicative, facLeft.multiplicative)} continue }
if facRight.typ&facLeft.typ == CONST { rightFactors[i] = factor{typ: CONST, negate: Xor(facRight.negate, facLeft.negate), multiplicative: mul2DVector(facRight.multiplicative, facLeft.multiplicative)} continue
} //tricky part here
//this one should only be reached, after a true mgate had its left and right braches computed. here we
//a factor can appear at most in quadratic form. we reduce terms a*a^-1 here.
if facRight.typ&facLeft.typ == IN { if facLeft.name == facRight.name { if facRight.invert != facLeft.invert { rightFactors[i] = factor{typ: CONST, negate: Xor(facRight.negate, facLeft.negate), multiplicative: mul2DVector(facRight.multiplicative, facLeft.multiplicative)} continue } }
//rightFactors[i] = factor{typ: CONST, negate: Xor(facRight.negate, facLeft.negate), multiplicative: mul2DVector(facRight.multiplicative, facLeft.multiplicative)}
//continue
} panic("unexpected. If this errror is thrown, its probably brcause a true multiplication gate has been skipped and treated as on with constant multiplication or addition ")
}
}
return rightFactors }
//returns the absolute value of a signed int and a flag telling if the input was positive or not
//this implementation is awesome and fast (see Henry S Warren, Hackers's Delight)
func abs(n int) (val int, positive bool) { y := n >> 63 return (n ^ y) - y, y == 0 }
//returns the reduced sum of two input factor arrays
//if no reduction was done (worst case), it returns the concatenation of the input arrays
func addFactors(leftFactors, rightFactors []factor) []factor { var found bool res := make([]factor, 0, len(leftFactors)+len(rightFactors)) for _, facLeft := range leftFactors {
found = false for i, facRight := range rightFactors {
if facLeft.typ&facRight.typ == CONST { var a0, b0 = facLeft.multiplicative[0], facRight.multiplicative[0] if facLeft.negate { a0 *= -1 } if facRight.negate { b0 *= -1 } absValue, positive := abs(a0*facRight.multiplicative[1] + facLeft.multiplicative[1]*b0)
rightFactors[i] = factor{typ: CONST, negate: !positive, multiplicative: [2]int{absValue, facLeft.multiplicative[1] * facRight.multiplicative[1]}}
found = true //res = append(res, factor{typ: CONST, negate: negate, multiplicative: [2]int{absValue, facLeft.multiplicative[1] * facRight.multiplicative[1]}})
break } if facLeft.typ&facRight.typ == IN && facLeft.invert == facRight.invert && facLeft.name == facRight.name { var a0, b0 = facLeft.multiplicative[0], facRight.multiplicative[0] if facLeft.negate { a0 *= -1 } if facRight.negate { b0 *= -1 } absValue, positive := abs(a0*facRight.multiplicative[1] + facLeft.multiplicative[1]*b0)
rightFactors[i] = factor{typ: IN, invert: facRight.invert, name: facRight.name, negate: !positive, multiplicative: [2]int{absValue, facLeft.multiplicative[1] * facRight.multiplicative[1]}}
found = true //res = append(res, factor{typ: CONST, negate: negate, multiplicative: [2]int{absValue, facLeft.multiplicative[1] * facRight.multiplicative[1]}})
break } } if !found { res = append(res, facLeft) } }
for _, val := range rightFactors { if val.multiplicative[0] != 0 { res = append(res, val) } }
return res }
//copies a gate neglecting its references to other gates
func cloneGate(in *gate) (out *gate) { constr := &Constraint{Inputs: in.value.Inputs, Out: in.value.Out, Op: in.value.Op, invert: in.value.invert, negate: in.value.negate, V2: in.value.V2, V1: in.value.V1} nRightins := make([]factor, len(in.rightIns)) nLeftInst := make([]factor, len(in.leftIns)) for k, v := range in.rightIns { nRightins[k] = v } for k, v := range in.leftIns { nLeftInst[k] = v } return &gate{value: constr, leftIns: nLeftInst, rightIns: nRightins, index: in.index} }
func (p *Program) getMainCircuit() *Circuit { return p.functions["main"] }
func prepareUtils() utils { bn, err := bn128.NewBn128() if err != nil { panic(err) } // new Finite Field
fqR := fields.NewFq(bn.R) // new Polynomial Field
pf := r1csqap.NewPolynomialField(fqR)
return utils{ Bn: bn, FqR: fqR, PF: pf, } }
func (p *Program) extendedFunctionRenamer(contextCircuit *Circuit, constraint *Constraint) (nextContext *Circuit) {
if constraint.Op != FUNC { panic("not a function") } //if _, ex := contextCircuit.gateMap[constraint.Out]; !ex {
// panic("constraint must be within the contextCircuit circuit")
//}
b, n, _ := isFunction(constraint.Out) if !b { panic("not expected") } if newContext, v := p.functions[n]; v { //am i certain that constraint.inputs is alwazs equal to n??? me dont like it
for i, argument := range constraint.Inputs {
isConst, _ := isValue(argument) if isConst { continue } isFunc, _, _ := isFunction(argument) if isFunc { panic("functions as arguments no supported yet") //p.extendedFunctionRenamer(contextCircuit,)
} //at this point I assert that argument is a variable. This can become troublesome later
//first we get the circuit in which the argument was created
inputOriginCircuit := p.functions[getContextFromVariable(argument)]
//we pick the gate that has the argument as output
if gate, ex := inputOriginCircuit.gateMap[argument]; ex { //we pick the old circuit inputs and let them now reference the same as the argument gate did,
oldGate := newContext.gateMap[newContext.Inputs[i]] //we take the old gate which was nothing but a input
//and link this input to its constituents coming from the calling contextCircuit.
//i think this is pretty neat
oldGate.value = gate.value oldGate.right = gate.right oldGate.left = gate.left
} else { panic("not expected") } } //newContext.renameInputs(constraint.Inputs)
return newContext }
return nil }
func NewProgram() (p *Program) { p = &Program{ functions: map[string]*Circuit{}, globalInputs: []string{"one"}, globalOutput: map[string]bool{"main": true}, arithmeticEnvironment: prepareUtils(), } return }
// GenerateR1CS generates the R1CS polynomials from the Circuit
func (p *Program) GenerateReducedR1CS(mGates []gate) (r1CS R1CS) { // from flat code to R1CS
offset := len(p.globalInputs) // one + in1 +in2+... + gate1 + gate2 .. + out
size := offset + len(mGates) indexMap := make(map[string]int)
for i, v := range p.globalInputs { indexMap[v] = i } for k, _ := range p.globalOutput { indexMap[k] = len(indexMap) } for _, v := range mGates { if _, ex := indexMap[v.value.Out]; !ex { indexMap[v.value.Out] = len(indexMap) }
}
for _, g := range mGates {
if g.OperationType() == MULTIPLY { aConstraint := r1csqap.ArrayOfBigZeros(size) bConstraint := r1csqap.ArrayOfBigZeros(size) cConstraint := r1csqap.ArrayOfBigZeros(size)
insertValue := func(val factor, arr []*big.Int) { if val.typ != CONST { if _, ex := indexMap[val.name]; !ex { panic(fmt.Sprintf("%v index not found!!!", val.name)) } } value := new(big.Int).Add(new(big.Int), fractionToField(val.multiplicative)) if val.negate { value.Neg(value) } //not that index is 0 if its a constant, since 0 is the map default if no entry was found
arr[indexMap[val.name]] = value }
for _, val := range g.leftIns { insertValue(val, aConstraint) }
for _, val := range g.rightIns { insertValue(val, bConstraint) }
cConstraint[indexMap[g.value.Out]] = big.NewInt(int64(1))
if g.value.invert { tmp := aConstraint aConstraint = cConstraint cConstraint = tmp } r1CS.A = append(r1CS.A, aConstraint) r1CS.B = append(r1CS.B, bConstraint) r1CS.C = append(r1CS.C, cConstraint)
} else { panic("not a m gate") } }
return }
var Utils = prepareUtils()
func fractionToField(in [2]int) *big.Int { return Utils.FqR.Mul(big.NewInt(int64(in[0])), Utils.FqR.Inverse(big.NewInt(int64(in[1]))))
}
//Calculates the witness (program trace) given some input
//asserts that R1CS has been computed and is stored in the program p memory calling this function
func CalculateWitness(input []*big.Int, r1cs R1CS) (witness []*big.Int) {
witness = r1csqap.ArrayOfBigZeros(len(r1cs.A[0])) set := make([]bool, len(witness)) witness[0] = big.NewInt(int64(1)) set[0] = true
for i := range input { witness[i+1] = input[i] set[i+1] = true }
zero := big.NewInt(int64(0))
for i := 0; i < len(r1cs.A); i++ { gatesLeftInputs := r1cs.A[i] gatesRightInputs := r1cs.B[i] gatesOutputs := r1cs.C[i]
sumLeft := big.NewInt(int64(0)) sumRight := big.NewInt(int64(0)) sumOut := big.NewInt(int64(0))
index := -1 division := false for j, val := range gatesLeftInputs { if val.Cmp(zero) != 0 { if !set[j] { index = j division = true break } sumLeft.Add(sumLeft, new(big.Int).Mul(val, witness[j])) } } for j, val := range gatesRightInputs { if val.Cmp(zero) != 0 { sumRight.Add(sumRight, new(big.Int).Mul(val, witness[j])) } }
for j, val := range gatesOutputs { if val.Cmp(zero) != 0 { if !set[j] { if index != -1 { panic("invalid R1CS form") }
index = j break } sumOut.Add(sumOut, new(big.Int).Mul(val, witness[j])) } }
if !division { set[index] = true witness[index] = new(big.Int).Mul(sumLeft, sumRight)
} else { b := sumRight.Int64() c := sumOut.Int64() set[index] = true //TODO replace with proper multiplication of b^-1 within the finite field
witness[index] = big.NewInt(c / b) //Utils.FqR.Mul(sumOut, Utils.FqR.Inverse(sumRight))
}
}
return }
var hasher = sha256.New()
func hashTogether(a, b []byte) []byte { hasher.Reset() hasher.Write(a) hasher.Write(b) return hasher.Sum(nil) }
|