|
|
# go-snark [![Go Report Card](https://goreportcard.com/badge/github.com/arnaucube/go-snark)](https://goreportcard.com/report/github.com/arnaucube/go-snark)
zk-SNARK library implementation in Go
Not finished, work in progress (doing this in my free time, so I don't have much time).
#### Test
``` go test ./... -v ```
## R1CS to Quadratic Arithmetic Program
- `Succinct Non-Interactive Zero Knowledge for a von Neumann Architecture`, Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, Madars Virza https://eprint.iacr.org/2013/879.pdf - Vitalik Buterin blog post about QAP https://medium.com/@VitalikButerin/quadratic-arithmetic-programs-from-zero-to-hero-f6d558cea649 - Ariel Gabizon in Zcash blog https://z.cash/blog/snark-explain5 - Lagrange polynomial Wikipedia article https://en.wikipedia.org/wiki/Lagrange_polynomial
#### Usage
- R1CS to QAP ```go b0 := big.NewFloat(float64(0)) b1 := big.NewFloat(float64(1)) b5 := big.NewFloat(float64(5)) a := [][]*big.Float{ []*big.Float{b0, b1, b0, b0, b0, b0}, []*big.Float{b0, b0, b0, b1, b0, b0}, []*big.Float{b0, b1, b0, b0, b1, b0}, []*big.Float{b5, b0, b0, b0, b0, b1}, } b := [][]*big.Float{ []*big.Float{b0, b1, b0, b0, b0, b0}, []*big.Float{b0, b1, b0, b0, b0, b0}, []*big.Float{b1, b0, b0, b0, b0, b0}, []*big.Float{b1, b0, b0, b0, b0, b0}, } c := [][]*big.Float{ []*big.Float{b0, b0, b0, b1, b0, b0}, []*big.Float{b0, b0, b0, b0, b1, b0}, []*big.Float{b0, b0, b0, b0, b0, b1}, []*big.Float{b0, b0, b1, b0, b0, b0}, } alpha, beta, gamma, z := R1CSToQAP(a, b, c) fmt.Println(alpha) fmt.Println(beta) fmt.Println(gamma) fmt.Println(z) /* out: alpha: [[-5 9.166666666666666 -5 0.8333333333333334] [8 -11.333333333333332 5 -0.6666666666666666] [0 0 0 0] [-6 9.5 -4 0.5] [4 -7 3.5 -0.5] [-1 1.8333333333333333 -1 0.16666666666666666]] beta: [[3 -5.166666666666667 2.5 -0.33333333333333337] [-2 5.166666666666667 -2.5 0.33333333333333337] [0 0 0 0] [0 0 0 0] [0 0 0 0] [0 0 0 0]] gamma: [[0 0 0 0] [0 0 0 0] [-1 1.8333333333333333 -1 0.16666666666666666] [4 -4.333333333333333 1.5 -0.16666666666666666] [-6 9.5 -4 0.5] [4 -7 3.5 -0.5]] z: [24 -50 35 -10 1] */ ```
## Bn128
Implementation of the bn128 pairing in Go.
Implementation followng the information and the implementations from: - `Multiplication and Squaring on Pairing-Friendly Fields`, Augusto Jun Devegili, Colm Ó hÉigeartaigh, Michael Scott, and Ricardo Dahab https://pdfs.semanticscholar.org/3e01/de88d7428076b2547b60072088507d881bf1.pdf - `Optimal Pairings`, Frederik Vercauteren https://www.cosic.esat.kuleuven.be/bcrypt/optimal.pdf , https://eprint.iacr.org/2008/096.pdf - `Double-and-Add with Relative Jacobian Coordinates`, Björn Fay https://eprint.iacr.org/2014/1014.pdf - `Fast and Regular Algorithms for Scalar Multiplication over Elliptic Curves`, Matthieu Rivain https://eprint.iacr.org/2011/338.pdf - `High-Speed Software Implementation of the Optimal Ate Pairing over Barreto–Naehrig Curves`, Jean-Luc Beuchat, Jorge E. González-Díaz, Shigeo Mitsunari, Eiji Okamoto, Francisco Rodríguez-Henríquez, and Tadanori Teruya https://eprint.iacr.org/2010/354.pdf - `New software speed records for cryptographic pairings`, Michael Naehrig, Ruben Niederhagen, Peter Schwabe https://cryptojedi.org/papers/dclxvi-20100714.pdf - `Implementing Cryptographic Pairings over Barreto-Naehrig Curves`, Augusto Jun Devegili, Michael Scott, Ricardo Dahab https://eprint.iacr.org/2007/390.pdf - https://github.com/zcash/zcash/tree/master/src/snark - https://github.com/iden3/snarkjs - https://github.com/ethereum/py_ecc/tree/master/py_ecc/bn128
#### Usage
- Pairing ```go bn128, err := NewBn128() assert.Nil(t, err)
big25 := big.NewInt(int64(25)) big30 := big.NewInt(int64(30))
g1a := bn128.G1.MulScalar(bn128.G1.G, big25) g2a := bn128.G2.MulScalar(bn128.G2.G, big30)
g1b := bn128.G1.MulScalar(bn128.G1.G, big30) g2b := bn128.G2.MulScalar(bn128.G2.G, big25)
pA, err := bn128.Pairing(g1a, g2a) assert.Nil(t, err) pB, err := bn128.Pairing(g1b, g2b) assert.Nil(t, err) assert.True(t, bn128.Fq12.Equal(pA, pB)) ```
|