|
|
## Bn128
Implementation of the bn128 pairing in Go.
Implementation followng the information and the implementations from: - `Multiplication and Squaring on Pairing-Friendly Fields`, Augusto Jun Devegili, Colm Ó hÉigeartaigh, Michael Scott, and Ricardo Dahab https://pdfs.semanticscholar.org/3e01/de88d7428076b2547b60072088507d881bf1.pdf - `Optimal Pairings`, Frederik Vercauteren https://www.cosic.esat.kuleuven.be/bcrypt/optimal.pdf , https://eprint.iacr.org/2008/096.pdf - `Double-and-Add with Relative Jacobian Coordinates`, Björn Fay https://eprint.iacr.org/2014/1014.pdf - `Fast and Regular Algorithms for Scalar Multiplication over Elliptic Curves`, Matthieu Rivain https://eprint.iacr.org/2011/338.pdf - `High-Speed Software Implementation of the Optimal Ate Pairing over Barreto–Naehrig Curves`, Jean-Luc Beuchat, Jorge E. González-Díaz, Shigeo Mitsunari, Eiji Okamoto, Francisco Rodríguez-Henríquez, and Tadanori Teruya https://eprint.iacr.org/2010/354.pdf - `New software speed records for cryptographic pairings`, Michael Naehrig, Ruben Niederhagen, Peter Schwabe https://cryptojedi.org/papers/dclxvi-20100714.pdf - `Implementing Cryptographic Pairings over Barreto-Naehrig Curves`, Augusto Jun Devegili, Michael Scott, Ricardo Dahab https://eprint.iacr.org/2007/390.pdf - https://github.com/zcash/zcash/tree/master/src/snark - https://github.com/iden3/snarkjs - https://github.com/ethereum/py_ecc/tree/master/py_ecc/bn128
- [x] Fq, Fq2, Fq6, Fq12 operations - [x] G1, G2 operations - [x] preparePairing - [x] PreComupteG1, PreComupteG2 - [x] DoubleStep, AddStep - [x] MillerLoop - [x] Pairing
### Installation
``` go get github.com/arnaucube/bn128 ```
#### Usage
- Pairing ```go bn128, err := NewBn128() assert.Nil(t, err)
big25 := big.NewInt(int64(25)) big30 := big.NewInt(int64(30))
g1a := bn128.G1.MulScalar(bn128.G1.G, big25) g2a := bn128.G2.MulScalar(bn128.G2.G, big30)
g1b := bn128.G1.MulScalar(bn128.G1.G, big30) g2b := bn128.G2.MulScalar(bn128.G2.G, big25)
pA, err := bn128.Pairing(g1a, g2a) assert.Nil(t, err) pB, err := bn128.Pairing(g1b, g2b) assert.Nil(t, err) assert.True(t, bn128.Fq12.Equal(pA, pB)) ```
#### Test
``` go test -v ```
##### Internal operations more deeply
First let's assume that we have these three basic functions to convert integer compositions to big integer compositions: ```go func iToBig(a int) *big.Int { return big.NewInt(int64(a)) }
func iiToBig(a, b int) [2]*big.Int { return [2]*big.Int{iToBig(a), iToBig(b)} }
func iiiToBig(a, b int) [2]*big.Int { return [2]*big.Int{iToBig(a), iToBig(b)} } ``` - Finite Fields (1, 2, 6, 12) operations ```go // new finite field of order 1 fq1 := NewFq(iToBig(7))
// basic operations of finite field 1 res := fq1.Add(iToBig(4), iToBig(4)) res = fq1.Double(iToBig(5)) res = fq1.Sub(iToBig(5), iToBig(7)) res = fq1.Neg(iToBig(5)) res = fq1.Mul(iToBig(5), iToBig(11)) res = fq1.Inverse(iToBig(4)) res = fq1.Square(iToBig(5))
// new finite field of order 2 nonResidueFq2str := "-1" // i/j nonResidueFq2, ok := new(big.Int).SetString(nonResidueFq2str, 10) fq2 := Fq2{fq1, nonResidueFq2} nonResidueFq6 := iiToBig(9, 1)
// basic operations of finite field of order 2 res := fq2.Add(iiToBig(4, 4), iiToBig(3, 4)) res = fq2.Double(iiToBig(5, 3)) res = fq2.Sub(iiToBig(5, 3), iiToBig(7, 2)) res = fq2.Neg(iiToBig(4, 4)) res = fq2.Mul(iiToBig(4, 4), iiToBig(3, 4)) res = fq2.Inverse(iiToBig(4, 4)) res = fq2.Div(iiToBig(4, 4), iiToBig(3, 4)) res = fq2.Square(iiToBig(4, 4))
// new finite field of order 6 nonResidueFq6 := iiToBig(9, 1) // TODO fq6 := Fq6{fq2, nonResidueFq6}
// define two new values of Finite Field 6, in order to be able to perform the operations a := [3][2]*big.Int{ iiToBig(1, 2), iiToBig(3, 4), iiToBig(5, 6)} b := [3][2]*big.Int{ iiToBig(12, 11), iiToBig(10, 9), iiToBig(8, 7)}
// basic operations of finite field order 6 res := fq6.Add(a, b) res = fq6.Sub(a, b) res = fq6.Mul(a, b) divRes := fq6.Div(mulRes, b)
// new finite field of order 12 q, ok := new(big.Int).SetString("21888242871839275222246405745257275088696311157297823662689037894645226208583", 10) // i if !ok { fmt.Println("error parsing string to big integer") }
fq1 := NewFq(q) nonResidueFq2, ok := new(big.Int).SetString("21888242871839275222246405745257275088696311157297823662689037894645226208582", 10) // i assert.True(t, ok) nonResidueFq6 := iiToBig(9, 1)
fq2 := Fq2{fq1, nonResidueFq2} fq6 := Fq6{fq2, nonResidueFq6} fq12 := Fq12{fq6, fq2, nonResidueFq6}
```
- G1 operations ```go bn128, err := NewBn128() assert.Nil(t, err)
r1 := big.NewInt(int64(33)) r2 := big.NewInt(int64(44))
gr1 := bn128.G1.MulScalar(bn128.G1.G, bn128.Fq1.Copy(r1)) gr2 := bn128.G1.MulScalar(bn128.G1.G, bn128.Fq1.Copy(r2))
grsum1 := bn128.G1.Add(gr1, gr2) r1r2 := bn128.Fq1.Add(r1, r2) grsum2 := bn128.G1.MulScalar(bn128.G1.G, r1r2)
a := bn128.G1.Affine(grsum1) b := bn128.G1.Affine(grsum2) assert.Equal(t, a, b) assert.Equal(t, "0x2f978c0ab89ebaa576866706b14787f360c4d6c3869efe5a72f7c3651a72ff00", utils.BytesToHex(a[0].Bytes())) assert.Equal(t, "0x12e4ba7f0edca8b4fa668fe153aebd908d322dc26ad964d4cd314795844b62b2", utils.BytesToHex(a[1].Bytes())) ```
- G2 operations ```go bn128, err := NewBn128() assert.Nil(t, err)
r1 := big.NewInt(int64(33)) r2 := big.NewInt(int64(44))
gr1 := bn128.G2.MulScalar(bn128.G2.G, bn128.Fq1.Copy(r1)) gr2 := bn128.G2.MulScalar(bn128.G2.G, bn128.Fq1.Copy(r2))
grsum1 := bn128.G2.Add(gr1, gr2) r1r2 := bn128.Fq1.Add(r1, r2) grsum2 := bn128.G2.MulScalar(bn128.G2.G, r1r2)
a := bn128.G2.Affine(grsum1) b := bn128.G2.Affine(grsum2) assert.Equal(t, a, b) ```
|