@ -1,6 +1,7 @@
package snark
import (
"bytes"
"encoding/json"
"fmt"
"math/big"
@ -14,14 +15,18 @@ import (
)
func TestZkFromFlatCircuitCode ( t * testing . T ) {
// compile circuit and get the R1CS
// circuit function
// y = x^3 + x + 5
flatCode := `
func test ( x ) :
aux = x * x
y = aux * x
z = x + y
out = z + 5
func test ( private s0 , public s1 ) :
s2 = s0 * s0
s3 = s2 * s0
s4 = s3 + s0
s5 = s4 + 5
equals ( s1 , s5 )
out = 1 * 1
`
fmt . Print ( "\nflat code of the circuit:" )
fmt . Println ( flatCode )
@ -36,10 +41,14 @@ func TestZkFromFlatCircuitCode(t *testing.T) {
b3 := big . NewInt ( int64 ( 3 ) )
privateInputs := [ ] * big . Int { b3 }
b35 := big . NewInt ( int64 ( 35 ) )
publicSignals := [ ] * big . Int { b35 }
// wittness
w , err := circuit . CalculateWitness ( privateInputs )
w , err := circuit . CalculateWitness ( privateInputs , publicSignals )
assert . Nil ( t , err )
fmt . Println ( "\nwitness" , w )
fmt . Println ( "\n" , circuit . Signals )
fmt . Println ( "witness" , w )
// flat code to R1CS
fmt . Println ( "\ngenerating R1CS from flat code" )
@ -58,6 +67,7 @@ func TestZkFromFlatCircuitCode(t *testing.T) {
fmt . Println ( "betas" , len ( betas ) )
fmt . Println ( "gammas" , len ( gammas ) )
fmt . Println ( "zx length" , len ( zxQAP ) )
assert . True ( t , ! bytes . Equal ( alphas [ 1 ] [ 1 ] . Bytes ( ) , big . NewInt ( int64 ( 0 ) ) . Bytes ( ) ) )
ax , bx , cx , px := Utils . PF . CombinePolynomials ( w , alphas , betas , gammas )
fmt . Println ( "ax length" , len ( ax ) )
@ -65,9 +75,6 @@ func TestZkFromFlatCircuitCode(t *testing.T) {
fmt . Println ( "cx length" , len ( cx ) )
fmt . Println ( "px length" , len ( px ) )
fmt . Println ( "px[last]" , px [ 0 ] )
px0 := Utils . PF . F . Add ( px [ 0 ] , big . NewInt ( int64 ( 88 ) ) )
fmt . Println ( px0 )
assert . Equal ( t , px0 . Bytes ( ) , Utils . PF . F . Zero ( ) . Bytes ( ) )
hxQAP := Utils . PF . DivisorPolynomial ( px , zxQAP )
fmt . Println ( "hx length" , len ( hxQAP ) )
@ -83,7 +90,7 @@ func TestZkFromFlatCircuitCode(t *testing.T) {
div , rem := Utils . PF . Div ( px , zxQAP )
assert . Equal ( t , hxQAP , div )
assert . Equal ( t , rem , r1csqap . ArrayOfBigZeros ( 4 ) )
assert . Equal ( t , rem , r1csqap . ArrayOfBigZeros ( 6 ) )
// calculate trusted setup
setup , err := GenerateTrustedSetup ( len ( w ) , * circuit , alphas , betas , gammas )
@ -97,6 +104,9 @@ func TestZkFromFlatCircuitCode(t *testing.T) {
hx := Utils . PF . DivisorPolynomial ( px , setup . Pk . Z )
fmt . Println ( "hx pk.z" , hx )
// assert.Equal(t, hxQAP, hx)
div , rem = Utils . PF . Div ( px , setup . Pk . Z )
assert . Equal ( t , hx , div )
assert . Equal ( t , rem , r1csqap . ArrayOfBigZeros ( 6 ) )
assert . Equal ( t , px , Utils . PF . Mul ( hxQAP , zxQAP ) )
// hx==px/zx so px==hx*zx
@ -116,41 +126,52 @@ func TestZkFromFlatCircuitCode(t *testing.T) {
// fmt.Println(proof)
// fmt.Println("public signals:", proof.PublicSignals)
fmt . Println ( "\n" , circuit . Signals )
fmt . Println ( "\nwitness" , w )
// b1 := big.NewInt(int64(1))
b35 := big . NewInt ( int64 ( 35 ) )
// publicSignals := []*big.Int{b1, b35}
publicSignals := [ ] * big . Int { b35 }
b35Verif := big . NewInt ( int64 ( 35 ) )
publicSignalsVerif := [ ] * big . Int { b35Verif }
before := time . Now ( )
assert . True ( t , VerifyProof ( * circuit , setup , proof , publicSignals , true ) )
assert . True ( t , VerifyProof ( * circuit , setup , proof , publicSignalsVerif , true ) )
fmt . Println ( "verify proof time elapsed:" , time . Since ( before ) )
// check that with another public input the verification returns false
bOtherWrongPublic := big . NewInt ( int64 ( 34 ) )
wrongPublicSignalsVerif := [ ] * big . Int { bOtherWrongPublic }
assert . True ( t , ! VerifyProof ( * circuit , setup , proof , wrongPublicSignalsVerif , true ) )
}
/ *
func TestZkMultiplication ( t * testing . T ) {
// compile circuit and get the R1CS
flatCode := `
func test ( a , b ) :
out = a * b
func test ( private a , private b , public c ) :
d = a * b
equals ( c , d )
out = 1 * 1
`
fmt . Print ( "\nflat code of the circuit:" )
fmt . Println ( flatCode )
// parse the code
parser := circuitcompiler . NewParser ( strings . NewReader ( flatCode ) )
circuit , err := parser . Parse ( )
assert . Nil ( t , err )
fmt . Println ( "\ncircuit data:" , circuit )
circuitJson , _ := json . Marshal ( circuit )
fmt . Println ( "circuit:" , string ( circuitJson ) )
b3 := big . NewInt ( int64 ( 3 ) )
b4 := big . NewInt ( int64 ( 4 ) )
inputs := [ ] * big . Int { b3 , b4 }
privateInputs := [ ] * big . Int { b3 , b4 }
b12 := big . NewInt ( int64 ( 12 ) )
publicSignals := [ ] * big . Int { b12 }
// wittness
w , err := circuit . CalculateWitness ( inputs )
w , err := circuit . CalculateWitness ( pr ivateI nputs , publicSignal s)
assert . Nil ( t , err )
fmt . Println ( "circuit" )
fmt . Println ( circuit . NPublic )
fmt . Println ( "\n" , circuit . Signals )
fmt . Println ( "witness" , w )
// flat code to R1CS
fmt . Println ( "\ngenerating R1CS from flat code" )
a , b , c := circuit . GenerateR1CS ( )
fmt . Println ( "\nR1CS:" )
fmt . Println ( "a:" , a )
@ -158,43 +179,87 @@ func TestZkMultiplication(t *testing.T) {
fmt . Println ( "c:" , c )
// R1CS to QAP
alphas , betas , gammas , zx := Utils . PF . R1CSToQAP ( a , b , c )
// TODO zxQAP is not used and is an old impl, bad calculated. TODO remove
alphas , betas , gammas , zxQAP := Utils . PF . R1CSToQAP ( a , b , c )
fmt . Println ( "qap" )
fmt . Println ( "alphas" , alphas )
fmt . Println ( "betas" , betas )
fmt . Println ( "gammas" , gammas )
fmt . Println ( "alphas" , len ( alphas ) )
fmt . Println ( "alphas[1]" , alphas [ 1 ] )
fmt . Println ( "betas" , len ( betas ) )
fmt . Println ( "gammas" , len ( gammas ) )
fmt . Println ( "zx length" , len ( zxQAP ) )
assert . True ( t , ! bytes . Equal ( alphas [ 1 ] [ 1 ] . Bytes ( ) , big . NewInt ( int64 ( 0 ) ) . Bytes ( ) ) )
ax , bx , cx , px := Utils . PF . CombinePolynomials ( w , alphas , betas , gammas )
fmt . Println ( "ax length" , len ( ax ) )
fmt . Println ( "bx length" , len ( bx ) )
fmt . Println ( "cx length" , len ( cx ) )
fmt . Println ( "px length" , len ( px ) )
fmt . Println ( "px[last]" , px [ 0 ] )
hx := Utils . PF . DivisorPolynomial ( px , zx )
hxQAP := Utils . PF . DivisorPolynomial ( px , zxQAP )
fmt . Println ( "hx length" , len ( hxQAP ) )
// hx==px/zx so px==hx*zx
assert . Equal ( t , px , Utils . PF . Mul ( hx , zx ) )
assert . Equal ( t , px , Utils . PF . Mul ( hxQAP , zxQAP ) )
// p(x) = a(x) * b(x) - c(x) == h(x) * z(x)
abc := Utils . PF . Sub ( Utils . PF . Mul ( ax , bx ) , cx )
assert . Equal ( t , abc , px )
hz := Utils . PF . Mul ( hx , zx )
assert . Equal ( t , abc , hz )
hzQAP := Utils . PF . Mul ( hxQAP , zxQAP )
assert . Equal ( t , abc , hzQAP )
div , rem := Utils . PF . Div ( px , zx )
assert . Equal ( t , hx , div )
assert . Equal ( t , rem , r1csqap . ArrayOfBigZeros ( 1 ) )
div , rem := Utils . PF . Div ( px , zxQAP )
assert . Equal ( t , hxQAP , div )
assert . Equal ( t , rem , r1csqap . ArrayOfBigZeros ( 4 ) )
// calculate trusted setup
setup , err := GenerateTrustedSetup ( len ( w ) , * circuit , alphas , betas , gammas , zx )
setup , err := GenerateTrustedSetup ( len ( w ) , * circuit , alphas , betas , gammas )
assert . Nil ( t , err )
fmt . Println ( "\nt:" , setup . Toxic . T )
// piA = g1 * A(t), piB = g2 * B(t), piC = g1 * C(t), piH = g1 * H(t)
proof , err := GenerateProofs ( * circuit , setup , hx , w )
// zx and setup.Pk.Z should be the same (currently not, the correct one is the calculation used inside GenerateTrustedSetup function), the calculation is repeated. TODO avoid repeating calculation
// assert.Equal(t, zxQAP, setup.Pk.Z)
fmt . Println ( "hx pk.z" , hxQAP )
hx := Utils . PF . DivisorPolynomial ( px , setup . Pk . Z )
fmt . Println ( "hx pk.z" , hx )
// assert.Equal(t, hxQAP, hx)
div , rem = Utils . PF . Div ( px , setup . Pk . Z )
assert . Equal ( t , hx , div )
assert . Equal ( t , rem , r1csqap . ArrayOfBigZeros ( 4 ) )
assert . Equal ( t , px , Utils . PF . Mul ( hxQAP , zxQAP ) )
// hx==px/zx so px==hx*zx
assert . Equal ( t , px , Utils . PF . Mul ( hx , setup . Pk . Z ) )
// check length of polynomials H(x) and Z(x)
assert . Equal ( t , len ( hx ) , len ( px ) - len ( setup . Pk . Z ) + 1 )
assert . Equal ( t , len ( hxQAP ) , len ( px ) - len ( zxQAP ) + 1 )
// fmt.Println("pk.Z", len(setup.Pk.Z))
// fmt.Println("zxQAP", len(zxQAP))
proof , err := GenerateProofs ( * circuit , setup , w , px )
assert . Nil ( t , err )
// assert.True(t, VerifyProof(*circuit, setup, proof, false))
b35 := big . NewInt ( int64 ( 35 ) )
publicSignals := [ ] * big . Int { b35 }
assert . True ( t , VerifyProof ( * circuit , setup , proof , publicSignals , true ) )
// fmt.Println("\n proofs:")
// fmt.Println(proof)
// fmt.Println("public signals:", proof.PublicSignals)
fmt . Println ( "\n" , circuit . Signals )
fmt . Println ( "\nwitness" , w )
b12Verif := big . NewInt ( int64 ( 12 ) )
publicSignalsVerif := [ ] * big . Int { b12Verif }
before := time . Now ( )
assert . True ( t , VerifyProof ( * circuit , setup , proof , publicSignalsVerif , true ) )
fmt . Println ( "verify proof time elapsed:" , time . Since ( before ) )
// check that with another public input the verification returns false
bOtherWrongPublic := big . NewInt ( int64 ( 11 ) )
wrongPublicSignalsVerif := [ ] * big . Int { bOtherWrongPublic }
assert . True ( t , ! VerifyProof ( * circuit , setup , proof , wrongPublicSignalsVerif , true ) )
}
* /
/ *
func TestZkFromHardcodedR1CS ( t * testing . T ) {
b0 := big . NewInt ( int64 ( 0 ) )