Browse Source

polynomial Division, SolPolynomials, DivisorPolynomial

pull/5/head
arnaucube 6 years ago
parent
commit
88c3e98cae
4 changed files with 126 additions and 20 deletions
  1. +41
    -13
      r1csqap/r1csqap.go
  2. +24
    -2
      r1csqap/r1csqap_test.go
  3. +43
    -3
      r1csqapFloat/r1csqapFloat.go
  4. +18
    -2
      r1csqapFloat/r1csqapFloat_test.go

+ 41
- 13
r1csqap/r1csqap.go

@ -47,6 +47,21 @@ func (pf PolynomialField) Mul(a, b []*big.Int) []*big.Int {
}
return r
}
func (pf PolynomialField) Div(a, b []*big.Int) ([]*big.Int, []*big.Int) {
// https://en.wikipedia.org/wiki/Division_algorithm
r := ArrayOfBigZeros(len(a) - len(b) + 1)
rem := a
for len(rem) >= len(b) {
l := pf.F.Div(rem[len(rem)-1], b[len(b)-1])
pos := len(rem) - len(b)
r[pos] = l
aux := ArrayOfBigZeros(pos)
aux1 := append(aux, l)
aux2 := pf.Sub(rem, pf.Mul(b, aux1))
rem = aux2[:len(aux2)-1]
}
return r, rem
}
func max(a, b int) int {
if a > b {
@ -72,24 +87,11 @@ func (pf PolynomialField) Sub(a, b []*big.Int) []*big.Int {
r[i] = pf.F.Add(r[i], a[i])
}
for i := 0; i < len(b); i++ {
// bneg := pf.F.Mul(b[i], big.NewInt(int64(-1)))
// r[i] = pf.F.Add(r[i], bneg)
r[i] = pf.F.Sub(r[i], b[i])
}
return r
}
// func FloatPow(a *big.Int, e int) *big.Int {
// if e == 0 {
// return big.NewInt(int64(1))
// }
// result := new(big.Int).Copy(a)
// for i := 0; i < e-1; i++ {
// result = new(big.Int).Mul(result, a)
// }
// return result
// }
func (pf PolynomialField) Eval(v []*big.Int, x *big.Int) *big.Int {
r := big.NewInt(int64(0))
for i := 0; i < len(v); i++ {
@ -155,3 +157,29 @@ func (pf PolynomialField) R1CSToQAP(a, b, c [][]*big.Int) ([][]*big.Int, [][]*bi
}
return alpha, beta, gamma, z
}
func (pf PolynomialField) SolPolynomials(r []*big.Int, ap, bp, cp [][]*big.Int) ([]*big.Int, []*big.Int, []*big.Int, []*big.Int) {
var alpha []*big.Int
for i := 0; i < len(r); i++ {
m := pf.Mul([]*big.Int{r[i]}, ap[i])
alpha = pf.Add(alpha, m)
}
var beta []*big.Int
for i := 0; i < len(r); i++ {
m := pf.Mul([]*big.Int{r[i]}, bp[i])
beta = pf.Add(beta, m)
}
var gamma []*big.Int
for i := 0; i < len(r); i++ {
m := pf.Mul([]*big.Int{r[i]}, cp[i])
gamma = pf.Add(gamma, m)
}
px := pf.Sub(pf.Mul(alpha, beta), gamma)
return alpha, beta, gamma, px
}
func (pf PolynomialField) DivisorPolinomial(px, z []*big.Int) []*big.Int {
quo, _ := pf.Div(px, z)
return quo
}

+ 24
- 2
r1csqap/r1csqap_test.go

@ -108,7 +108,12 @@ func TestR1CSToQAP(t *testing.T) {
b0 := big.NewInt(int64(0))
b1 := big.NewInt(int64(1))
b3 := big.NewInt(int64(3))
b5 := big.NewInt(int64(5))
b9 := big.NewInt(int64(9))
b27 := big.NewInt(int64(27))
b30 := big.NewInt(int64(30))
b35 := big.NewInt(int64(35))
a := [][]*big.Int{
[]*big.Int{b0, b1, b0, b0, b0, b0},
[]*big.Int{b0, b0, b0, b1, b0, b0},
@ -127,10 +132,27 @@ func TestR1CSToQAP(t *testing.T) {
[]*big.Int{b0, b0, b0, b0, b0, b1},
[]*big.Int{b0, b0, b1, b0, b0, b0},
}
alpha, beta, gamma, z := pf.R1CSToQAP(a, b, c)
ap, bp, cp, z := pf.R1CSToQAP(a, b, c)
fmt.Println(ap)
fmt.Println(bp)
fmt.Println(cp)
fmt.Println(z)
w := []*big.Int{b1, b3, b35, b9, b27, b30}
alpha, beta, gamma, px := pf.SolPolynomials(w, ap, bp, cp)
fmt.Println(alpha)
fmt.Println(beta)
fmt.Println(gamma)
fmt.Println(z)
fmt.Println(px)
h := pf.DivisorPolinomial(px, z)
fmt.Println(h)
// h==px/z so px==h*z
assert.Equal(t, px, pf.Mul(h, z))
// a(x) * b(x) - c(x) == h * z(x)
abc := pf.Sub(pf.Mul(alpha, beta), gamma)
hz := pf.Mul(h, z)
assert.Equal(t, abc, hz)
}

+ 43
- 3
r1csqapFloat/r1csqapFloat.go

@ -1,8 +1,6 @@
package r1csqapFloat
import (
"math/big"
)
import "math/big"
func Transpose(matrix [][]*big.Float) [][]*big.Float {
var r [][]*big.Float
@ -37,6 +35,22 @@ func PolMul(a, b []*big.Float) []*big.Float {
return r
}
func PolDiv(a, b []*big.Float) ([]*big.Float, []*big.Float) {
// https://en.wikipedia.org/wiki/Division_algorithm
r := ArrayOfBigZeros(len(a) - len(b) + 1)
rem := a
for len(rem) >= len(b) {
l := new(big.Float).Quo(rem[len(rem)-1], b[len(b)-1])
pos := len(rem) - len(b)
r[pos] = l
aux := ArrayOfBigZeros(pos)
aux1 := append(aux, l)
aux2 := PolSub(rem, PolMul(b, aux1))
rem = aux2[:len(aux2)-1]
}
return r, rem
}
func max(a, b int) int {
if a > b {
return a
@ -143,3 +157,29 @@ func R1CSToQAP(a, b, c [][]*big.Float) ([][]*big.Float, [][]*big.Float, [][]*big
}
return alpha, beta, gamma, z
}
func SolPolynomials(r []*big.Float, ap, bp, cp [][]*big.Float) ([]*big.Float, []*big.Float, []*big.Float, []*big.Float) {
var alpha []*big.Float
for i := 0; i < len(r); i++ {
m := PolMul([]*big.Float{r[i]}, ap[i])
alpha = PolAdd(alpha, m)
}
var beta []*big.Float
for i := 0; i < len(r); i++ {
m := PolMul([]*big.Float{r[i]}, bp[i])
beta = PolAdd(beta, m)
}
var gamma []*big.Float
for i := 0; i < len(r); i++ {
m := PolMul([]*big.Float{r[i]}, cp[i])
gamma = PolAdd(gamma, m)
}
px := PolSub(PolMul(alpha, beta), gamma)
return alpha, beta, gamma, px
}
func DivisorPolinomial(px, z []*big.Float) []*big.Float {
quo, _ := PolDiv(px, z)
return quo
}

+ 18
- 2
r1csqapFloat/r1csqapFloat_test.go

@ -84,7 +84,12 @@ func TestLagrangeInterpolation(t *testing.T) {
func TestR1CSToQAP(t *testing.T) {
b0 := big.NewFloat(float64(0))
b1 := big.NewFloat(float64(1))
b3 := big.NewFloat(float64(3))
b5 := big.NewFloat(float64(5))
b9 := big.NewFloat(float64(9))
b27 := big.NewFloat(float64(27))
b30 := big.NewFloat(float64(30))
b35 := big.NewFloat(float64(35))
a := [][]*big.Float{
[]*big.Float{b0, b1, b0, b0, b0, b0},
[]*big.Float{b0, b0, b0, b1, b0, b0},
@ -103,10 +108,21 @@ func TestR1CSToQAP(t *testing.T) {
[]*big.Float{b0, b0, b0, b0, b0, b1},
[]*big.Float{b0, b0, b1, b0, b0, b0},
}
alpha, beta, gamma, z := R1CSToQAP(a, b, c)
ap, bp, cp, z := R1CSToQAP(a, b, c)
fmt.Println(ap)
fmt.Println(bp)
fmt.Println(cp)
fmt.Println(z)
zexpected := []*big.Float{big.NewFloat(float64(24)), big.NewFloat(float64(-50)), big.NewFloat(float64(35)), big.NewFloat(float64(-10)), big.NewFloat(float64(1))}
assert.Equal(t, z, zexpected)
w := []*big.Float{b1, b3, b35, b9, b27, b30}
alpha, beta, gamma, px := SolPolynomials(w, ap, bp, cp)
fmt.Println(alpha)
fmt.Println(beta)
fmt.Println(gamma)
fmt.Println(z)
fmt.Println(px)
h := DivisorPolinomial(px, z)
fmt.Println(h)
}

Loading…
Cancel
Save